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Evolution of Modelica

K. Astrom, H. E. Matisson (1998). Evoluion of continu
12" European Simulation Muliconference

g and simulaion.




Modelica Association

Non-pro t, non-governmental organization

Aim: developing and promoting Modelica

Introducton

Modelica Association websitevww.modelica.org
@ Language speci cation

@ Modelica libraries
Search engineimpact.github.io

@ Tools

@ Publications (theses, papers, proc. Intl. Modelica Conf.)
@ Tutorials and teaching material

@ Etc.

@ Visit the Modelica Association website
@ See avallable libraries atwiw.modelica orgfibraries

Some characteristics of Modelica

Intoduciion

o Free
@ Object-oriented Equation-based
@ Hybrid DAE models
(Hybrid = combined continuous-time and discrete-time behavior)
(DAE = Di erential and algebraic equations)
{ Equations, possibly with a variable structure
o algebraic equations
o ordinary di erential equations with time derivative
o dierence equation
{ Algorithms, functions
{ Time events and state events

Some European projects

@ Period 2009-12

{ EUROSYSLIB(Advanced Modelica Libraries)

{ MODELISAR (Modelica-AUTOSAR Interoperability and
Vehicle Functional Mock-up)

{ OPENPROD(Open Model-Driven Whole-Product
D and

Intoduction

370 person-years 54 million
(Source: v modelca orgpublicationsinewsletersi20 05-1)
@ Period 2012-16
{ MODRIO (Model Driven Physical Systems Operation)

38 research and industrial organizatiores21 million
9 Vist wwiw:modelica orglpublicationsinewsetters/2008-1
@ Visit wwav modelica.orgfexternalprojects

The 7 classes

Inoduciion

type New types of variables

connector Set of interface variables

model Classes of models

block Models with causal interfaces
record Sets of parameters

function  Functions

package  Model libraries



Modeling environments

Commercial
@ Dymola (free trial version 10 state variables)
@ MathModelica System Designer
@ SimulationX (student and evaluation versions)
@ Etc.

Free

Intoduction

.

OpenModelica
@ Scilab/Scicos
@ Etc.

See tools atwwwmodelica orgitools
Start Dymola

File/Demosiobot

°
°
@ Inspect the Modelica Standard Library (MSL)
°
@ Modelica Electrical Analog Examples.

Intoduciion

| model conoleaTank
| Real Vs =10, FFnve
S0, A% 2 k=1,Kp =10, el =2

[ v magke ve)
| ena convoleaank;

Wiite and simulate the model using Dymola

Intoduction

Manipulations on the model




VEUELIES

Prede ned types and their attributes

Real Real values, e.g. -1.5877, 1.5e-5
Boolean Values: true, false

Integer Integer values, e.g. 1, -3
enumeration  Enumerations, e.g.:

ModeTransstor = enumerton Gulf Linear Satraton)
Variables of ModeTransistor type have 3 possible v

Variables

detra or Satura

String String of characters, e.g. \full", \empty”

Continuous-time variables Discrete-time variables

Real Real, Boolean, Integer, enumeration, String
Example:
Rea % ( qantit. ngth", mit="m", displayUnit="cm",
min=-100, max-100, star Lixed=Lrue );
! ©n( start 2, min -10, max 10 );

Rooléan b( start=true );
String s( start="connected" );

Variables

De nition of new types

Fragment of the Modelica.Slunits package

package Slmita

iTarny

type Angu

)
ry - Rea
he neveterscion = aial

Attributes not declared as nal can be rede ned, e.g.:
Modelica Slunils Angle  alpha, beta ( displayuni ad, min=0 )

Inspect the Modelica Siunits package

VEUELIES

Enumeration type

Operators: equal (=), assignment
Reference vector and matrix elemente.g

relational ( <, <

fype Mixmnre - emmeration (Renzens, Water, Ethanol)s

Variables model examsiemmumeration

110 e e 0.5
Rliixturs Benzene] = 0.25 1 0.1%sin (2"tine"2) s

1 o - -1
end examplesmmaracions

01— —

k5]

Wiite and simulate the model using Dymola,

VEUELIES

Declared variability

can't be modi ed

constant

parameter  time-independent quantity
can be modi ed (inheritance, composition, experiment)

discrete  optional pre x for discrete-time variables
(noprex)  Continuous-time and discrete-time variables
Example:

te Real x3;
n flowlsposit;

Inspect the Modelica Consias package




VEUELIES

The time variable

@ Itis prede ned
© Itis accessible from any class
Variables @ start = initial time of the simulation
© Implicit declaration:

input Real time ( final quantity = Time", final unit = "s" )

VEUELIES

An example

VEUELIES

An example

Steady-state radial heat transfer in an insulated pipe

VEUELIES

Vectors and matrices

Declaration
Variables
Real [3] p, v, &;
Real [3,2,10] T;

Real p[3], v(3], a[3];
Real T[3,2,10];

Deduction of ranges

Real []p, v, a;
Real [ 1, ] T;

Real p[], v[, al;
Real L &, ;

! Number of equations depends on vector and matrix ranges
! Modeling environment calculates ranges before partition
! Ranges can't change during simulation



Variables

Variables

Vectors and matrices

ndims  size
Real x[3] 1 f
Real y[3,4] 2 1349
Real 2345 3 13459

@ Number of dimensions
ndims(A)  Number of dimensions in A
ndims( 1,2, 2, 5, 519 )
ndims([1, 2, 3; 4,5, 6] )

@ Number of components in every dimension

size(A, i) Number of components in the i-th dimension of A
size s

size( [1, 2,3, 4,5,6], 1) 2
size( [1, 2, 3; 4, 5, 6], 2

size(A)  Vector with the number of components in each dimension of A
s\za(leZSSlg) Il 159
size( L, 2, I 12,39

VEUELIES

Vectors and matrices

f expressiorfor iterators g

"
nz2

VEUELIES

Vectors and matrices

Initialization

VEUELIES

Vectors and matrices

Type declaration



Variables

Vectors and matrices

Returned vector or matrix

Function
diagonal (v) Square matrix with the v vector in the diagonal and zero
non-diagonal elements

Variables

Il (s.nLn2,...) nonp i matrix lled with the s value
transpose(A) First and second dimensions ofA are switched
zeros(n1,n2,...) noonp i matrix lled with zeros

ones(n1,n2,...) nomp i matrix lled with ones

identity (n) N n identity matrix

linspace(x1,x2,n) Array with n components equispaced betweerx; and xz
min (A), max(A) Minimum/Maximum value in A

sum(A), product (A)  Sum/Product of all the components in A
Cross(x,y) Vector product on two three-dimensional vectors x, y

Vectorization of functions
Eg. sqi(£1,23) 1 sart(d), san(@), san(@) g

Equations

Have the following form:
expressionl = expression2;

@ Can be written within equation sectionsof model and block classes

Equations &
agoitms @ Modeling environment sorts and rearranges equations
E.9.: Ohm's Law can be written indistinctly:

VEiR; V-i*R=0; -VIR=-i; 0=-vIR+i;

@ Single-assignment rule
@ Vector and matrix equations

Real 3], 4] Real (3] y{4] Real A[32] B(2.4]
Real A34]; Real A[3.4] Real C[3.4]
equation equation equation
x=Aty; yExoA c=aB

& algorithms

Equations

Example of vector and matrix equations

Wite and simulate the mode! during 1 year (=31536e7 5)




Equations

Example of vector and matrix equations

Equations &
algorithms

For clause

@ syntax:

for for_indices loop

i
@ Can be written within equation and algorithm sections
@ Expanded into equations/assignments before partitioning the system
1 indices must be known before partition
! indices can't change after partition

Equations &
algorithms

Algorithms

Algorithm = sequence of assignments
! written in algorithm sectionsof model, block and function classes
Assignment has the following formyariable := expression;
The modeling environment

! Does not sort or rearrange assignments within algorithms:

assignments in an algorithm are executed in the given order

I Sorts algorithms (as indivisible sets) together with equans
A variable evaluated from an algorithm cannot be evaluatedofn
another algorithm or equation
Several assignations to the same variable are allowed in dgosthm

¢ e

Equations &
algorithms

.

©

@ Syntax: if Boolean_expression_1 then
elseif Boolean_expression_2 then
elsé

end'if;

@ Can be written within equation and algorithm sections

@ If all Boolean expressions depend only on constants and paraeters
! false branches are removed from the model before partition
! these constants/parameters can't be changed after partition
Otherwise | model with a variable structure (will be explained later)



Reduction expression

"uncl\cn ( expression for iterators ) JI'sum, product, min, max

@ Modelica built-in functions: abs sign, sqrt, sin, cos exp, etc.
@ User-de ned function, which encapsulates

s A Modelica algorithm
# A call to an external function (C, Fortran 77)

double tan2(double, double)

@ Functions should not have internal memory
@ By-default value of parameters



Function

Example: linear interpolation

X —
tablex(] (
table¥(]

tableY(2]

tableY(4]
tableY[1]

tableY(3]

tablex(1] tablex(3] -
tablex(2)  tablex(4]

Program the funciion and a model that calls the funciion. Simulate the model

Function

Example: linear interpolation

Function

Example: linear interpolation




Event speci cation: trigger condition (Boolean expression) and actions

Event execution does not consume simulated time
! variables have 2 values at event time: previous and new value
pre operator allows referring to the previous value, e.g:

2 pre(x); / x duplicated at every event

Actions associated to events

@ Switch branches in expressions with several branches, stae
changes in models with a variable structure, mode switchirg
mult-mode models {f sentence and clause)

© Changes in discrete-time variablesvien sentence)

° changes in time state
sentence,reinit operator)

Syntax in equation/algorithm section(else can be replaced byelseif-then-elsg
if cond then
equations / assignments
else
equations / assignments
end if;
If-clause translation within equation sections
@ If all conditions depend only on constant and parameters
1 modeling environment evaluates conditions before transltion, replaces if
clause by active branch equations and sort them independeiy
1" After translation, it is not possible to modify the value of t hese
parameters
@ Otherwise, active branch can switch during simulation
1 if-clause conditions are translated into event conditions
1 if clause is translated into if sentences, which are Sortedridependently
1 all branches must have the same number of equations

expr; 0= if cond then exprL - expr2
exprd = exprd: elseexpis - exprs;
else '
xS = exprs; 0= if cond then expr3 - exprd
exprT = expre: elscexpr? - expig;

If sentence

Syntax:
equation
exprl = if Boolean_expression then expr2 else expr3;
algorithm
variable = if Boolean_expression then exprl else expr2;

Elsebranches can be replaced bsiseif-then-elsge.g.:
exprl = if Boolean_expression1 then expr2
elseif Boolean_expression.2 then expr3 else exprd;
variable := if Boolean_expression.1 then exprl
elseif Boolean_expression.2 then expr2 else expr3;

If clause

Example: electric circuit with ideal switch

Constitutive relation of an ideal switch:

0= if open then i elseuD;

Circuit with an ideal switch:

open
00hm {

——

. +WR -  +w - |05 w et
u T
L

Model the circuit and simulate it during 16 s.




If clause If clause

Example: electric circuit with ideal switch Example: electric circuit with ideal switch

When sentence

When sentence pre(), sample(), initial(), terminal(

[ When-sentence body is executed when conditifmise ! true

L—— tinitial+nxperiod



When sentence

Scalar and vector conditions

Two tanks and valve

Two tanks and valve

Wit the model and simulate it during 200 s

Simulation of hybrid-DAE models




Event condition

Every event has associated a condition:
when condition = false!  true, the event is triggered

@ If condition depends of at least a continuous-time variable
! continuous-time event condition
It has to be checked during the solution of the continuousrtie
problem

@ If condition depends on discrete-time variables
! discrete-time event condition

@ Time eventshave the form

time > t;

wheret; is the instant at which the event is triggered

Event handling

o Event iteration
Numerical integration advances at time steps
! state event is detected at a time later than the event
instant
@ Solution of the re-start problem
The new values of the variables must satisfy:
» The equations that describe theontinuous-time behavior
of the system.
» The equations that describe thehange in the model state
due to the event
@ Re-evaluation of the event conditions
If another events are triggered, then they are executed and
the event conditions re-evaluated (chain of events)

Crossing functions

Event conditions are expressed as crossing functions, whige checked
during the solution of the continuous-time problem.

AN

By-default value ofeveps= 1E-10

Simultaneous events

Example

whenx; 05 y then
reinit (x1;0)
end when;

whenx, 0:5 y then
reinit (x; 10)
end when;
Selecting the following initial values to the state variables
x1(0)=0 x2(0) = 10
attime t =5 both event conditions change from false to true, given that
x1(5)=5

%2 (5)=5 y(6) =10



Simultaneous events

Example

Resut of executing the event whose condtion is (1 0’5 y)
After executing the event
x1=

y=
(a 05 y)= false
(2 05 y)= false

Result of executing the event whose condition is (xp _ 0'5 y)
Before executing the event After executing the event

X =5
X =5

y=10 y=15

(05 y)= tue (05 y)= false
(05 y)= tue (2 05 y)= false

Result of executing both events
Before executing the event After execuling the event
0

X1 =5 X1 =

X =5 %2 =10

y=10 y=10

(xa (1 05 y)= faise

(205 y)= false

Single assignment rule

All events whose conditions change falsetrue are executed.

Single assignment rule is imposed to avoid that the execution
of several events a ect to the same state variable
Single assignment rule
All instantaneous changes that a discrete-time
variable can experience must be described using one
instantaneous equation or algorithm

The potential risk of simultaneous activation of events that
change the same state variable is eliminated.

Simultaneous events

Example

Describe the model in Modelica and simulate it during 16 5

Example: bouncing ball




Example: bouncing ball

State variable selection

@ Dynamic selection by the modeling environment
Sven Erik Mattsson, Hans Olsson and Hilding Elmquist.Dynamic Selection
of States in Dymola. Modelica Workshop 2000, Oct 23-24, 2000, Lund,
Sweden, pp. 61 67.

@ Selection by the model developer
Motivation:
{ Numerical precision
{ Avoid function inversion
{ Reduce the number of nonlinear systems of equations
{ reinit(x) requires x to be state variable

State variable selection is independent of initial conditon speci cation
The xed atribute does not have in uence over the state variable setction

State variable selection

Selection by the model developer

Realvariables have an attribute namedtateSelectof type:

type StateSelect = enumeration ( never, avoid, defaul, prefer, always );

Example of use: Real y ( stateSelect = StateSelect.always );

never Do not use it as a state.

avoid  Avoid it as state, preferring to choose variables having thedefault value.

default  State variables are selected automatically among di erenfated variables.
If the variable does not appear di erentiated, then this means no.

prefer  Prefer this variable over those having the default value. ltdoes not need
to appear di erentiated to be selected as state variable.

always  Select it as state variable.



Model initialization

Continuous-time variables

@ start, xed attributes

By-default values: fixed
fixed
@ initial equation section

Real x(start=x0, fixed= true );

true
false

I/ Initial constraint: x = x0

for constants and parameters
for time-dependent variables

Model initialization

Problem statement

Goal
Find consistent initial values for all model quantities

Initialzation

Model initialization

Example: planar pendulum

phi(0) = 1
wo) =0



Model initialization

Example: planar pendulum

Initialzation

phi(0) = ? (aprox.: 0.1)

Model initialization

Discrete-time variables

Initialzation

Model initialization

Example: planar pendulum

PR N(L=7 (@prox.: 1)

m=1

X(0)=05
¥(0)=0.9

w(0) =0

phi(0) = ? (aprox.: 0.1)

Model initialization

Discrete-time variables

Initialzation



Model initialization Model initialization

Discrete-time variables Discrete-time variables

Initialzation Initialzation

Model initialization

Initial expression / Dynamic expression

Model initialization

Discrete-time variables

Initialzation Initialzation



°

°

modeling

Modularity and hierarc|

Models are developednodularly. The di erent parts of the system
are modeled and are theusture of
the physical system.

Models arehierarchicallystructured. They can be de ned by
connecting several components, which have also been de rigd
connecting other components, and so on.

Component description is made distinguishing between:

+ Interface describes the interaction between the component and
its environment.
# Internal description describes the model structure and behavior.
As the interface isolates the component internal descripti from the

component environment, this approach allows to address the
modeling of the internal

Physical modeling

Steps for developing the model:
@ Specify the system structure and divide the system in parts
(subsystems).
@ Specify the interaction among the parts.

@ Specify the internal behavior of each part independently die other
parts, in terms of mass, energy and momentum balances, and
constitutive relations.

Modeling languages facilitate the application of the physal modeling
paradigm.

Connectors

Interface variables are classi ed depending on how they awfated at the
connection point:

@ Across have the same value.
@ Through: their sum at a connection point is equal to zero.

]
g

model




Modeling the energy conservation

Connector variables satisfying cross _through) = power

Domain Across Through
Electrical Voltage (V) Current (A)
Translational  Velocity (m/s) Force (N)

Rotational  Angular ve\ucwy (radls) Torque (N m)
Hydraulic Pressure (N/r Volumetric ow (m /s)
Thermal Temperature ( ) Flow of entropy (W/K)
Chemical Chemical potential (Jmol) Molar_ow (mol/s)

Attempt for interface standardization in the MSL

modeling

Inspect Interfaces  packagesof the MSL, ..

@ Modelica Electrical Analog Interfaces
@ Modelica Mechanics.Translational nterfaces
@ Modelica Fluid Interfaces

@ Modelica Thermal HeafTransfer Inerfaces

Component reuse

Two fundamental methods for reusing component models:

© Compositionis the ability to de ne new models by instantiating and
connecting other models previously de ned.

@ Specializationis the ability to de ne new models by specializing other
previously existing models.

modeling

Encapsulation

The
Information encapsulationmeans that only the interface variables are
accessible externally to other components.

The application of theinformation hiding technique to the design of
modular models facilitates testing, debugging and modi ¢@n of the
models.

internal is

©

©

9 It also facilitates abstractiont which is the ability of using a
component without knowing their internal detals.

@ Abstraction is a key design principle to facilitate reusingf
component models.

Model classes and parametrization

A class is a description of a set of objects with some propesiin
common.

@ Model classes describe types of systems, while class instanspecify
systems in particular.

The simulation is performed on a class instance.

¢ ©

Parametrizationis a key concept related to model reuse.

°

Model parametersare model properties that can be con gured to
adapt the model to its di erent applications.

A parameter can range, in a wide sense, from time-indepenten
variable to a complete structure of components.

oriented
modeling




Inheritance

Model classes can be inherited.

°

a ism of
If class A is de ned as asubclassof class B, then class B is the
superclasof class A,

©

©

Modelica supportsmultiple inheritance
Subclasses inherit all the attributes de ned in their supelasses.
A subclass can be considered as a re nement or specializativof the
general concept de ned in its superclass, to which new equéons o
components speci ¢ of the subclass are added.

©

@ If local attributes are in contradiction with the attributes inherited
from the superclasses, théocal attributes prevail in the subclass
This property is a mechanism of parametrization, as it allovs modifying
model properties to adapt the model to di erent application s.

Example: electrical library

System description

Circuit diagram

VAN

Components

oo

modeling

Polymorphism

Polymorphism is a concept related to theeuse of models
Two models are polymorphic if they have

°

+ Interfaces with equivalent structures
» (Number of variables) (Number of equations)

°

Polymorphism is a necessary condition that two models have t
satisfy in order to be used in the same context, and exchanged
without modifying the rest of the system.

Polymorphic models frequently have a superclass in commaheir
interface.

®

Example: electrical library

Library architecture

Object-
riented
g

model



Example: electrical library Example: electrical library

Interfaces Components

Example: electrical library Example: electrical library

Components Circuit model




modeling

Example: electrical library

Simulation

ElectricLib.Examples.circuit

Other features of Modelica

@ Models with a regular structure (vector of classes)

@ Obiject class can be declared as a parameter

@ Record class

@ Block class

@ Physical elds

@ Annotations (documentation, icon, diagram, MSL version,te.)
@ Scripting language to de ne experiments on the model

The quadruple tank system

System description and control challenge

Goat Control the liquid level in Tanks 1 and 2 (hy y hy), manipulating the pump
voltages (v y v2).
Control strategy: Decentralized Pl




Model

where:

The quadruple tank system

ap,
= EPrgme
Ay anm

ap
2P e
Ay om

mpo—— aps 2k
s 2 meXPrameil oy,
R 2OMTR 2O A
[y
= Blram. 2B,
As A
ap ¢ Kk
= Mgt 2,
RO A '

Hole and section areas of tanki
Proportionaliy constant of pump |
Proporton of iquid that ows ffom pump ] to_the upper tank

The quadruple tank system

Tasks

@ Design a model library that facilitates composing the mode the
quadruple tank system

@ Program the library in Modelica and use it to compose the motief
the quadruple tank system

@ Model in Modelica a SISO PI controller

@ Connect the quadruple tank and PI controller models, and sittate
the closed-loop plant model



	Introduction
	Variables
	Equations & algorithms
	Functions
	Events
	State variable selection
	Initialization
	Object-oriented modeling

