
Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Modeling and simulation with Modelica

Alfonso Urqu��a, Carla Mart��n-Villalba and Victorino Sanz

Dpto. de Inform�atica y Autom�atica, UNED
Juan del Rosal 16, 28040 Madrid

f aurquia,carla,vsanz g@dia.uned.es
http://www.euclides.dia.uned.es/

InMotion retraining - Madrid, April 25th � 26th 2017

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Outline

1 Introduction
2 Variables
3 Equations & algorithms
4 Functions
5 Events
6 State variable selection
7 Initialization
8 Object-oriented modeling
9 Course assignment

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Introduction

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Evolution of Modelica

�� � ��� � � � �

��

� �� 	
���
 � ���� �� � � �� �� � �����

�� �� �

 ! "
�

#

$
�

% &'''

 � � ��� �� �

(
�� �� ��

)
���

�� �� �

*! +
�

,

�� �� -

./ 0 11

�� �� 2

*!+ 11

�� �� 3

*! +
��

�� -� �

. 4 0 �-

� 5 � 6

�� -� �

. 4 0 �3

�7

�� -� -

8! 9 � :

�;

<= > ? @ ABC DE F? GEC FA= EC @ H= E I? G? EB? J

KL M NO P Q QR S T U V WXYZ VZ U [

\ L] ^ _ P Q \ R M ` Z _a bb̂ b Z U c db Z U W e Z _f ^ U g [

h L i dj P Q h R S k U l da k U m WX YZ VZ U [

nL
] ^ _

P QoR p
f̂ `

T
_m

qp
^ _`

T
_m

W
e

Z
_f ^

U
g

[

o L XZ
a

P QrR s
k

ZU U
^

WtT uO
_k ^

[

r L
] ^ _

P QvR w
k

Z xZ
b

Z x V W
e

Z
_f ^

U
g

[

yL XZ a P QzR { df d W|O ^ x g [

v L] ^ _ P K KR } _ Z u VZ U W e Z _f ^ U g [

z L XZ
a

P K
h

R
]

T U
k

N
c

W
e

Z
_f ^

U
g

[

K QL] ^ _ P K nR ST U V W XYZ VZU [

K KL XZ a P KoR sZ _ u ^ k xxZ u W ~ _^ U NZ[

K \ L] ^ g P K yR • _^ m T Z W{ €Z N c •Z a T ` x k N[

�� ��

�� 2� �

 ! " � #

� � � �

�� 2� -

‚4ƒ � �

� � � � � 5

�� 2� 2

‚4„ �-

� 6 � 7 � ;

�� 2� 2 ƒ
!

�� �

./ …
�3

Recommended reading

K.J. Astrom, H. Elmqvist, S.E. Mattsson (1998). Evolution of continuous-time modeling and simulation.
12th European Simulation Multiconference

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Modelica Association

Non-pro�t, non-governmental organization
Aim: developing and promoting Modelica

Modelica Association website:www.modelica.org

Language speci�cation

Modelica libraries
Search engine:impact.github.io

Tools

Publications (theses, papers, proc. Intl. Modelica Conf.)

Tutorials and teaching material

Etc.

Proposed activities

Visit the Modelica Association website

See available libraries atwww.modelica.org/libraries

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Some European projects

Period 2009-12

{ EUROSYSLIB(Advanced Modelica Libraries)
{ MODELISAR(Modelica-AUTOSAR Interoperability and

Vehicle Functional Mock-up)
{ OPENPROD(Open Model-Driven Whole-Product

Development and Simulation Environment)

370 person-years,e 54 million
(Source: www.modelica.org/publications/newsletters/20 09-1)

Period 2012-16

{ MODRIO (Model Driven Physical Systems Operation)

38 research and industrial organizations,e 21 million

Proposed activities

Visit www.modelica.org/publications/newsletters/2009-1

Visit www.modelica.org/external-projects

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Some characteristics of Modelica

Free

Object-oriented, Equation-based

Hybrid DAE models
(Hybrid = combined continuous-time and discrete-time behavior)

(DAE = Di�erential and algebraic equations)

{ Equations, possibly with a variable structure
algebraic equations
ordinary di�erential equations with time derivative
di�erence equation

{ Algorithms, functions
{ Time events and state events

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

The 7 classes

type New types of variables

connector Set of interface variables

model Classes of models

block Models with causal interfaces

record Sets of parameters

function Functions

package Model libraries

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Modeling environments

Commercial

Dymola (free trial version� 10 state variables)

MathModelica System Designer
SimulationX(student and evaluation versions)

Etc.

Free

OpenModelica
Scilab/Scicos
Etc.

Proposed activities

See tools at www.modelica.org/tools

Start Dymola

Inspect the Modelica Standard Library (MSL)

File/Demos/robot

Modelica.Electrical.Analog.Examples

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Manipulations on the model

��������	
����

����	
����

��
��������	�
�	������	
�������
�

�����	�
	�	��
�����

���������� � �� �������	�
�	��
������	�
������	
�� ����	�����
��
��	�
������
��
!�
��	��
�������
	�
�	��
�����	��

�����
	�������
 �

	���
���
��������� � �� "�
�#�	�����	#����$���	�
�	���#���	�������
�
�� %�������

�� "�������
	�&	���	'() �
���
!� *�
$����	
�
��������
	�&	�������
�
+� �����
�	�&	����$����	�����

�������������������

,�
������	
������

*�
������
	�������$��

����������

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Example: controlled tank

����������

� 	�
����
�	���

���� ��� 	�
����	�
�	��������������
� ��� 	
 	�
�����	���
� �����������
�	����
� ��	������

 �������������������	�����
���� � ���������������		�������������
� ���
��������	�����	�������

�

�

�
	
�

��

�������	���

���	���������� ��� ��� ��� 	
 ����� �
���������� �����
������ � ��� ���

��
���
�� �����

����
���

� �

�

�� !�

	

	

���

�

��
� �

��

� � � �

�
 �

� � �

� � �

� � �

� �

� � � �

� �

� �

� �

� �

model controlledTank
Real V (start =10), h, F, Fin, v, e;
parameter Real a = 0.1, A = 2, k = 1, Kp = 10, href = 2;
constant Real g = 9.8;

equation
der (V) = Fin - F;
F = a * sqrt (max(0, 2*g*h));
V = A * h;
Fin = k * v;
e = href - h;
v = max(0, Kp * e);

end controlledTank;

Proposed activity

Write and simulate the model using Dymola

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Variables

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Variables
Prede�ned types and their attributes

Real Real values, e.g. -1.5877, 1.5e-5
Boolean Values: true, false
Integer Integer values, e.g. 1, -3
enumeration Enumerations, e.g.:

type ModeTransistor = enumeration (Cutoff,Linear,Saturation);
Variables of ModeTransistor type have 3 possible values:
ModeTransistor.Cutoff, ModeTransistor.Linear, ModeTra nsistor.Saturation

String String of characters, e.g. \full", \empty"

Continuous-time variables Discrete-time variables

Real Real, Boolean, Integer, enumeration, String

Example:

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Variables
Enumeration type

Operators:equal (=), assignment (:=), relational (< , < =, > , > =, ==, <>)

Reference vector and matrix elements, e.g.:

Proposed activity

Write and simulate the model using Dymola

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Variables
De�nition of new types

Fragment of the Modelica.SIunits package

Attributes not declared as �nal can be rede�ned, e.g.:
Modelica.SIunits.Angle alpha, beta (displayUnit= "rad" , min=0);

Proposed activity

Inspect the Modelica.SIunits package

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Variables
Declared variability

constant can't be modi�ed

parameter time-independent quantity
can be modi�ed (inheritance, composition, experiment)

discrete optional pre�x for discrete-time variables

(no pre�x) Continuous-time and discrete-time variables

Example:

����������	
�����
	
��������
����	�
	
��

Proposed activity

Inspect the Modelica.Constants package

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Variables
The time variable

It is prede�ned

It is accessible from any class

start = initial time of the simulation

Implicit declaration:

input Real time (final quantity = "Time" , final unit = "s");

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Variables
An example

Steady-state radial heat transfer in an insulated pipe

���������	
����

�����
����

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Variables
An example

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Variables
Vectors and matrices

Declaration

Real [3] p, v, a; Real p[3], v[3], a[3];
Real [3,2,10] T; Real T[3,2,10];

Deduction of ranges

Real [:] p, v, a; Real p[:], v[:], a[:];
Real [:, :, :] T; Real T[:, :, :];

! Number of equations depends on vector and matrix ranges
! Modeling environment calculates ranges before partition
! Ranges can't change during simulation

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Variables
Vectors and matrices

ndims size
Real x[3] 1 f 3g
Real y[3,4] 2 f 3,4g
Real z[3,4,5] 3 f 3,4,5g

Number of dimensions
ndims(A) Number of dimensions in A

ndims(f -1, 2, 2, 5, 51g) // 1
ndims([1, 2, 3; 4, 5, 6]) // 2

Number of components in every dimension
size(A, i) Number of components in the i-th dimension of A

size(f -1, 2, 2, 5, 51g, 1) // 5
size([1, 2, 3; 4, 5, 6], 1) // 2
size([1, 2, 3; 4, 5, 6], 2) // 3

size(A) Vector with the number of components in each dimension of A
size(f -1, 2, 2, 5, 51g) // f 5g
size([1, 2, 3; 4, 5, 6]) // f 2, 3g

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Variables
Vectors and matrices

Initialization

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Variables
Vectors and matrices

f expressionfor iterators g
Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Variables
Vectors and matrices

Type declaration

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Variables
Vectors and matrices

Function Returned vector or matrix

diagonal (v) Square matrix with the v vector in the diagonal and zero

non-diagonal elements

�ll (s,n1,n2,...) n1 � n2 � : : : matrix �lled with the s value

transpose(A) First and second dimensions ofA are switched

zeros(n1,n2,...) n1 � n2 � : : : matrix �lled with zeros

ones(n1,n2,...) n1 � n2 � : : : matrix �lled with ones

identity (n) n � n identity matrix

linspace(x1,x2,n) Array with n components equispaced betweenx1 and x2

min (A), max(A) Minimum/Maximum value in A

sum(A), product (A) Sum/Product of all the components in A

cross(x,y) Vector product on two three-dimensional vectors x, y

Vectorization of functions

E.g.: sqrt(f 1,2,3g) �! f sqrt(1), sqrt(2), sqrt(3) g

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Equations & algorithms

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Equations

Have the following form:

expression1 = expression2;

Can be written within equation sectionsof model and block classes

Modeling environment sorts and rearranges equations
E.g.: Ohm's Law can be written indistinctly:

v=i*R; v-i*R=0; -v/R=-i; 0=-v/R+i;

Single-assignment rule

Vector and matrix equations

Real x[3], y[4];
Real A[3,4];

equation
x = A * y;

�� �
� � � � �� � � � � ��� � � � � �� � � � � � �� � � � � ��� �� � � � � �� � �� 	� 	 � ��� 	

Real x[3], y[4];
Real A[3,4];

equation
y = x * A;

 �
 �
� � � �� �

� �� � � � � � � � � � � � �� �
� �� � � �� 	

Real A[3,2], B[2,4];
Real C[3,4];

equation
C = A * B;

� � � � � �� � � �
� � � �� �� � � �� � � � � � � � � �� � � � � � � �� 	� � � �� � � � � �� 	 � 	

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Equations
Example of vector and matrix equations

���

�

�

�����

���

�
�����

���������	�
���	��

Proposed activity

Write and simulate the model during 1 year (=3.1536e7 s)

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Equations
Example of vector and matrix equations

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Algorithms

Algorithm = sequence of assignments
! written in algorithm sectionsof model, block and function classes

Assignment has the following form:variable := expression;

The modeling environment
! Does not sort or rearrange assignments within algorithms:

assignments in an algorithm are executed in the given order
! Sorts algorithms (as indivisible sets) together with equations

A variable evaluated from an algorithm cannot be evaluated from
another algorithm or equation

Several assignations to the same variable are allowed in an algorithm

��������	��
�
������
��
���������������
�������

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

For clause

Syntax: for for indices loop
...

end for;
Can be written within equation and algorithm sections
Expanded into equations/assignments before partitioning the system
! indices must be known before partition
! indices can't change after partition

�
�

�
�

�
�

� � ��
�

� �� � � � �

�

�
�

� � � � � � � � �

�

�

� � � � � � � �� �

�
�

�
� �

� � � � � � � � � � �

��

� �

�

�� ��
	
 	

	
 	

	
 	
� � � �
	
 	

	
 	

 		

� �� �

� �

� �

�� ��

��� �� ��

��� �� ��� �

� �� � �� �

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

If clause

Syntax: if Boolean expression 1 then
...

elseif Boolean expression 2 then
...

else
...

end if ;
Can be written within equation and algorithm sections
If all Boolean expressions depend only on constants and parameters
! false branches are removed from the model before partition
! these constants/parameters can't be changed after partition
Otherwise ! model with a variable structure (will be explained later)

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Reduction expression

function (expression for iterators) // sum, product, min, max

��
�

�

� � ��� ���
�

�
�

� � � ��

�

������	

�
 �
 �	
�

�
�

� � � ��

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Functions

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Function

Modelica built-in functions: abs, sign, sqrt, sin, cos, exp, etc.

User-de�ned function, which encapsulates

A Modelica algorithm
A call to an external function (C, Fortran 77)

���������	��
�������
���
double tan2(double,double);

�������������������� tan2.c ����

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Function

Functions should not have internal memory

By-default value of parameters

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Function
Example: linear interpolation

x
tableX[:]
tableY[:]

y�

x

y

tableY[2]

tableY[4]
tableY[1]

tableY[3]

tableX[1] tableX[3]
tableX[2] tableX[4]

Proposed activity

Program the function and a model that calls the function. Simulate the model

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Function
Example: linear interpolation

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Function
Example: linear interpolation

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Events

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Events

Event speci�cation: trigger condition (Boolean expression) and actions

Event execution does not consume simulated time
! variables have 2 values at event time: previous and new values
pre operator allows referring to the previous value, e.g:

x = 2 � pre(x); // x duplicated at every event

Actions associated to events

Switch branches in expressions with several branches, structure
changes in models with a variable structure, mode switchingin
multi-mode models (if sentence and clause)

Changes in discrete-time variables (when sentence)

Instantaneous changes in continuous-time state variables(when
sentence,reinit operator)

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

If sentence

Syntax:
equation

expr1 = if Boolean expression then expr2 else expr3;

algorithm
variable := if Boolean expression then expr1 else expr2;

Elsebranches can be replaced byelseif-then-else, e.g.:

expr1 = if Boolean expression 1 then expr2
elseif Boolean expression 2 then expr3 else expr4;

variable := if Boolean expression 1 then expr1
elseif Boolean expression 2 then expr2 else expr3;

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

If clause

Syntax in equation/algorithm section(elsecan be replaced byelseif-then-else):
if cond then

equations / assignments
else

equations / assignments
end if;

If-clause translation within equation sections:

If all conditions depend only on constant and parameters
! modeling environment evaluates conditions before translation, replaces if
clause by active branch equations and sort them independently
! After translation, it is not possible to modify the value of t hese
parameters
Otherwise, active branch can switch during simulation
! if-clause conditions are translated into event conditions
! if clause is translated into if sentences, which are sorted independently
! all branches must have the same number of equations

if cond then
expr1 = expr2; 0 = if cond then expr1 - expr2
expr3 = expr4; elseexpr5 - expr6;

else !
expr5 = expr6; 0 = if cond then expr3 - expr4
expr7 = expr8; elseexpr7 - expr8;

end if;

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

If clause
Example: electric circuit with ideal switch

Constitutive relation of an ideal switch:

0 = if open then i else uD;

Circuit with an ideal switch:

time (s)0 5 10 time (s)0 5 10

U=5U=5

i

+ uD -

open

+ uR -
+

sin(2*time)
-

10 ohm i

+ uD -

open

+ uR -
+

sin(2*time)
-

10 ohm

Proposed activity

Model the circuit and simulate it during 16 s.

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

If clause
Example: electric circuit with ideal switch

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

If clause
Example: electric circuit with ideal switch

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

When sentence

When-sentence body is executed when conditionfalse ! true

��������	��	
�����	
���

����	��	�����	��������
�������	�����������	��	�	��������	
������	��	���������	��
����	���	
�������

�
	����	������	���	���������	
���������������	��	���	���������	
����	��	���
����	��	������
��	

�����	����	��	
����

���	�����	�
	���	���������	������	���	����	

�����	��	����������

�������������	���������	���	������	��������	
����	
��������������	���������

������	����������	����

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

When sentence
pre(), sample(), initial(), terminal()

†‡̂‰Š ‹ Š Œ •ŽŽ̂ Œ̂• •Š tInitial+n×period •‰‹Š •‰Š ‹

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

When sentence
Scalar and vector conditions

����������	
�
�� �
��������	
�
��

����
����
����
����

����
����
����
����

�����������	
������
���������
�����
��������
������	�����
������	����
��
�
�

�����������	
������
���������
�����	������
�����������
�
��	�����������	����
��
�
�

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Two tanks and valve

� � �

�

� � � �

� �

�

�

����������

��������	
���

�������������

��������	
���

�	
�� ��	
�

����

����	
�

�

��

�

� � �
�

�

� � � � �
�

� � �

�	�
 �

�

�

� �

��
� �

�

� � ��
� �

� ���
�

�

	

�

�
� �

�
�

�

� � �

�

�
� � �

��
�

��
��

� � � � � �
��

�

�

�

� � ��

� �

� � �

�

�

	

�

�
� �

�
�

�

� � �

�

�
� � �

��
�

��
��

� � � � � �
��

�

�

�

� � ��

�

� �

�

�

��������	��
�	��������
����
�	��������
����

���������	�
���	��� � � ������������ � � ������������ � � ���������� � � ���������� � �������

���������� � ���������� � �� �� � ����� � ���� � ����� � ���� � ��������� � � ������������ �� �����

��
����

�� ��� �� � ��
�

���������� � � � � �

Proposed activity

Write the model and simulate it during 200 s

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Two tanks and valve

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Simulation of hybrid-DAE models

���������	����
�����
��
������������
���
�������������
�� ��	�

�
����
���
�����������������
���

�����

�
����
���
������
������������
�� ��
���

������	������
��
���
	
�����������������	��
�	���
���

�����

�
����
��
�������
�����
�����
��
��
���
��������������������
�� ��
�

�!����
��������
����
�

"�����

��	

#��$

#��$

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Event condition

Every event has associated a condition:
when condition = false ! true, the event is triggered

If condition depends of at least a continuous-time variable
! continuous-time event condition
It has to be checked during the solution of the continuous-time
problem

If condition depends on discrete-time variables
! discrete-time event condition

Time eventshave the form

time > t i

where t i is the instant at which the event is triggered

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Crossing functions

Event conditions are expressed as crossing functions, which are checked
during the solution of the continuous-time problem.

�����

� �����

�

�

By-default value ofeveps= 1E-10

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Event handling

Event iteration
Numerical integration advances at time steps
! state event is detected at a time later than the event
instant

Solution of the re-start problem
The new values of the variables must satisfy:

The equations that describe thecontinuous-time behavior
of the system.
The equations that describe thechange in the model state
due to the event.

Re-evaluation of the event conditions
If another events are triggered, then they are executed and
the event conditions re-evaluated (chain of events)

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Simultaneous events
Example

dx1

dt
= 1

dx2

dt
= � 1

x1 + x2 = y

when x1 � 0:5 � y then
reinit (x1; 0)

end when;

when x2 � 0:5 � y then
reinit (x2; 10)

end when;

Selecting the following initial values to the state variables

x1 (0) = 0 x2 (0) = 10

at time t = 5 both event conditions change from false to true, given that

x1 (5) = 5 x2 (5) = 5 y (5) = 10

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Simultaneous events
Example

Result of executing the event whose condition is (x1 � 0:5 � y)

Before executing the event After executing the event

x1 = 5 x1 = 0
x2 = 5 x2 = 5
y = 10 y = 5
(x1 � 0:5 � y) = true (x1 � 0:5 � y) = false
(x2 � 0:5 � y) = true (x2 � 0:5 � y) = false

Result of executing the event whose condition is (x2 � 0:5 � y)

Before executing the event After executing the event

x1 = 5 x1 = 5
x2 = 5 x2 = 10
y = 10 y = 15
(x1 � 0:5 � y) = true (x1 � 0:5 � y) = false
(x2 � 0:5 � y) = true (x2 � 0:5 � y) = false

Result of executing both events

Before executing the event After executing the event

x1 = 5 x1 = 0
x2 = 5 x2 = 10
y = 10 y = 10
(x1 � 0:5 � y) = true (x1 � 0:5 � y) = false
(x2 � 0:5 � y) = true (x2 � 0:5 � y) = false

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Simultaneous events
Example

Proposed activity

Describe the model in Modelica and simulate it during 16 s

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Single assignment rule

All events whose conditions change false! true are executed.

Single assignment rule is imposed to avoid that the execution
of several events a�ect to the same state variable
Single assignment rule:

All instantaneous changes that a discrete-time
variable can experience must be described using one
instantaneous equation or algorithm

The potential risk of simultaneous activation of events that
change the same state variable is eliminated.

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Example: bouncing ball

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Example: bouncing ball

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

State variable selection

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

State variable selection

Dynamic selection by the modeling environment
Sven Erik Mattsson, Hans Olsson and Hilding Elmqvist.Dynamic Selection
of States in Dymola. Modelica Workshop 2000, Oct 23-24, 2000, Lund,
Sweden, pp. 61� 67.
https://www.modelica.org/events/workshop2000/proceed ings/old/Mattsson.pdf

Selection by the model developer
Motivation:

{ Numerical precision
{ Avoid function inversion
{ Reduce the number of nonlinear systems of equations
{ reinit(x) requires x to be state variable

State variable selection is independent of initial condition speci�cation
The �xed attribute does not have in
uence over the state variable selection

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

State variable selection
Selection by the model developer

Realvariables have an attribute namedstateSelectof type:

type StateSelect = enumeration (never, avoid, default, prefer, always);

Example of use: Real y (stateSelect = StateSelect.always);

never Do not use it as a state.

avoid Avoid it as state, preferring to choose variables having thedefault value.

default State variables are selected automatically among di�erentiated variables.
If the variable does not appear di�erentiated, then this means no.

prefer Prefer this variable over those having the default value. Itdoes not need

to appear di�erentiated to be selected as state variable.

always Select it as state variable.

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Initialization

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Model initialization
Problem statement

Goal:

Find consistent initial values for all model quantities

����������	
����
������	��
��
���������
��	
��������	��

����	��
���������������
�	���
	�
���� �
�	������
��	��
� ������������
�� �
�	������������������������������������

��	��	����������	����
�� �
�	��������	��
���
�	����������	
�

� � � ����� �� � �� � �� � �� ���� �� � �� � �� �� �� � � � � � �

��������	��
�
��
�
��������������� ������������������������ ��������	��������
�

��������	�
�
�

������
�
��� ���

 ���
	�
����!	�����	�	������������
"������ ���� ��

 �#�����	����������
������ ���� ��

 �������	�!	��������������
������ ���� ��� �

�

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Model initialization
Continuous-time variables

start, �xed attributes
Real x(start=x0, fixed= true); // Initial constraint: x = x0

By-default values: fixed = true for constants and parameters
fixed = false for time-dependent variables

initial equation section

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Model initialization
Example: planar pendulum

���������	�
���	����

������������
����������������

phi(0) = 1
w(0) = 0

phi
L=1

m=1

x

y

g=9.81

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Model initialization
Example: planar pendulum

���������	�
���	����
��
����������������

y(0) = 0.9
w(0) = 0
phi(0) = ? (aprox.: 0.1)

phi
L=1

m=1

x

y

g=9.81
Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Model initialization
Example: planar pendulum

x(0) = 0.5
y(0) = 0.9
w(0) = 0
phi(0) = ? (aprox.: 0.1)

phi L=? (aprox.: 1)

m=1

x

y

g=9.81

���������	�
���	����
����
�����������������

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Model initialization
Discrete-time variables

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Model initialization
Discrete-time variables

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Model initialization
Discrete-time variables

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Model initialization
Discrete-time variables

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Model initialization
Discrete-time variables

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Model initialization
Initial expression / Dynamic expression

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Object-oriented modeling

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Physical modeling paradigm

Steps for developing the model:

1 Specify the system structure and divide the system in parts
(subsystems).

2 Specify the interaction among the parts.

3 Specify the internal behavior of each part independently ofthe other
parts, in terms of mass, energy and momentum balances, and
constitutive relations.

Modeling languages facilitate the application of the physical modeling

paradigm.

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Modularity and hierarchy

Models are developedmodularly. The di�erent parts of the system
are modeled separately and are connected replicating the structure of
the physical system.

Models arehierarchicallystructured. They can be de�ned by
connecting several components, which have also been de�nedby
connecting other components, and so on.

Component description is made distinguishing between:

Interface: describes the interaction between the component and
its environment.
Internal description: describes the model structure and behavior.

As the interface isolates the component internal description from the
component environment, this approach allows to address the
modeling of the component internal description separately.

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Connectors

Interface variables are classi�ed depending on how they arerelated at the
connection point:

Across: have the same value.

Through: their sum at a connection point is equal to zero.

��

��

��

��
�� ��

����

��

��

��

��

� � � �

� � � � �

� � � �

� � � �

� � �

� � � �

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Modeling the energy conservation

Connector variables satisfying (across � through) = power
Domain Across Through
Electrical Voltage (V) Current (A)
Translational Velocity (m/s) Force (N)
Rotational Angular velocity (rad/s) Torque (N �m)
Hydraulic Pressure (N/m2) Volumetric
ow (m 3/s)
Thermal Temperature (K) Flow of entropy (W/K)
Chemical Chemical potential (J/mol) Molar
ow (mol/s)

Attempt for interface standardization in the MSL

Proposed activity

Inspect Interfaces packagesof the MSL, e.g.:

Modelica.Electrical.Analog.Interfaces

Modelica.Mechanics.Translational.Interfaces

Modelica.Fluid.Interfaces

Modelica.Thermal.HeatTransfer.Interfaces

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Encapsulation

The component internal description is encapsulated.

Information encapsulationmeans that only the interface variables are
accessible externally to other components.

The application of the information hiding technique to the design of
modular models facilitates testing, debugging and modi�cation of the
models.

It also facilitates abstraction: which is the ability of using a
component without knowing their internal details.

Abstraction is a key design principle to facilitate reusingof
component models.

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Component reuse

Two fundamental methods for reusing component models:

Composition is the ability to de�ne new models by instantiating and
connecting other models previously de�ned.

Specializationis the ability to de�ne new models by specializing other
previously existing models.

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Model classes and parametrization

A class is a description of a set of objects with some properties in
common.

Model classes describe types of systems, while class instances specify
systems in particular.

The simulation is performed on a class instance.

Parametrization is a key concept related to model reuse.

Model parametersare model properties that can be con�gured to
adapt the model to its di�erent applications.

A parameter can range, in a wide sense, from time-independent
variable to a complete structure of components.

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Inheritance

Model classes can be inherited.

Inheritanceis a mechanism of specialization.

If class A is de�ned as asubclassof class B, then class B is the
superclassof class A.

Modelica supportsmultiple inheritance.

Subclasses inherit all the attributes de�ned in their superclasses.

A subclass can be considered as a re�nement or specialization of the
general concept de�ned in its superclass, to which new equations or
components speci�c of the subclass are added.

If local attributes are in contradiction with the attributes inherited
from the superclasses, thelocal attributes prevail in the subclass.

This property is a mechanism of parametrization, as it allows modifying
model properties to adapt the model to di�erent application s.

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Polymorphism

Polymorphism is a concept related to thereuse of models.

Two models are polymorphic if they have

Interfaces with equivalent structures
(Number of variables)� (Number of equations)

Polymorphism is a necessary condition that two models have to
satisfy in order to be used in the same context, and exchanged
without modifying the rest of the system.

Polymorphic models frequently have a superclass in common:their
interface.

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Example: electrical library
System description

Circuit diagram

� �

� � ���
�

Components

�
�

�

�
� � ��

�

�

�
�

�

�

�
�

�

�

� ���� �� � �� �� � � � � ���	�
 � �� �� � � �� � � � � �� � 	�

 �

	�
� �

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Example: electrical library
Library architecture

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Example: electrical library
Interfaces

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Example: electrical library
Components

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Example: electrical library
Components

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Example: electrical library
Circuit model

�

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Example: electrical library
Simulation

ElectricLib.Examples.circuit

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Other features of Modelica

Models with a regular structure (vector of classes)

Object class can be declared as a parameter

Record class

Block class

Physical �elds

Annotations (documentation, icon, diagram, MSL version, etc.)

Scripting language to de�ne experiments on the model

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

Course assignment

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

The quadruple tank system
System description and control challenge

Goal: Control the liquid level in Tanks 1 and 2 (h1 y h2), manipulating the pump
voltages (v1 y v2).

Control strategy: Decentralized PI

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

The quadruple tank system
Model

dh1

d t
= �

a1

A1

p
2 � g � h1 +

a3

A1

p
2 � g � h3 +

 1 � k1

A1
� v1

dh2

d t
= �

a2

A2

p
2 � g � h2 +

a4

A2

p
2 � g � h4 +

 2 � k2

A2
� v2

dh3

d t
= �

a3

A3

p
2 � g � h3 +

(1 �
 2) � k2

A3
� v2

dh4

d t
= �

a4

A4

p
2 � g � h4 +

(1 �
 1) � k1

A4
� v1

where: ai , Ai Hole and section areas of tanki
kj Proportionality constant of pump j

 j Proportion of liquid that
ows from pump j to the upper tank

Introduction

Variables

Equations &
algorithms

Functions

Events

State variable
selection

Initialization

Object-
oriented
modeling

Course
assignment

The quadruple tank system
Tasks

1 Design a model library that facilitates composing the modelof the
quadruple tank system

2 Program the library in Modelica and use it to compose the model of
the quadruple tank system

3 Model in Modelica a SISO PI controller

4 Connect the quadruple tank and PI controller models, and simulate
the closed-loop plant model

	Introduction
	Variables
	Equations & algorithms
	Functions
	Events
	State variable selection
	Initialization
	Object-oriented modeling

