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Efficient Interpolation in Wu List Decoding
Algorithm

Peter Trifonov, Member, IEEE, and Moon Ho Lee, Senior Member, IEEE

Abstract—The interpolation step of Wu list decoding algorithm
for Reed-Solomon codes is considered. The problem is reformu-
lated as construction of a partially homogenized interpolation
polynomial. A generalization of the binary interpolation algo-
rithm, which is based on the novel formulation of the interpola-
tion step, is provided. It enables complexity reducion both with
respect to the Wu method based on the Iterative Interpolation
Algorithm (IIA), as well as the Guruswami-Sudan method based
on re-encoding and the binary interpolation algorithm.

I. INTRODUCTION

Reed-Solomon codes are extensively used in modern com-
munication and storage systems. Classical algebraic decoding
algorithms are able to correct up to (d − 1)/2 errors, where
d is the minimum distance of the code. List decoding can
significantly increase the error correction radius at the expense
of possible non-uniqueness of the decoder output. Guruswami
and Sudan have proposed a polynomial-time decoding algo-
rithm for Reed-Solomon codes [1]. However, its complexity
remains too high for practical applications despite of numerous
complexity reduction methods proposed recently [2], [3], [4],
[5]. Wu proposed to use rational curve fitting to derive the
solutions of the list decoding problem from the output of
the classical Berlekamp-Massey algorithm [6]. This approach
requires much smaller root multiplicity, which automatically
results in smaller complexity. However, the complexity still
remains much higher than for the case of classical algorithms.

In this paper a novel derivation of the Wu list decoding
method is given. The new formulation of the interpolation step
avoids roots at infinity, which are used in the description of
the original method [6]. This allows one to introduce the ideal
of interpolation polynomials, enabling thus application of the
fast binary interpolation algorithm, which was introduced in
[5] for the case of Guruswami-Sudan algorithm.

The paper is organized as follows. The new derivation of
the Wu method is given in Section III. The rational curve
fitting problem, which is used in the considered method, is
treated in Section IV. Section V presents a generalization of
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the binary interpolation method to the case of rational curve
fitting problem. Numeric results are provided in Section VI.
Finally, some conclusions are drawn.

II. NOTATION

• [Qi, 0 ≤ i ≤ v] =

{
v∑

i=0

pi(x)Qi|pi(x) ∈ F[x]

}
is the

module generated by multivariate polynomials Qi with
coefficients in F.

• LTQ is the leading term of the polynomial Q with
respect to some term ordering.

• ydegQ = j iff LTQ(x, y) = axuyj (in the case of
bivariate polynomials) or LTQ(x, y, z) = axuyjzρ−j (in
the case of trivariate partially homogenized polynomials
with some fixed ρ) for some a ∈ F and u ∈ Z.

• xdegQ(x, y, z) = u iff LTQ(x, y, z) = axuyjzρ−j for
some a ∈ F and u ∈ Z.

• ∆(B) =
∑s

j=0 xdegBj , where B =
(B0(x, y, z), . . . , Bs(x, y, z)).

• wdeg(a,b,c) αx
uyvzw = au + bv + cw, α ∈ F \ {0}, is

the (a, b, c)-weighted degree of monomial αxuyvzw. The
(a, b, c)-weighted degree of a polynomial is equal to the
highest weighted degree of its non-zero monomials.

III. A SIMPLE DERIVATION OF WU ALGORITHM

(n, k, n− k+ 1) Reed-Solomon code is defined as a set of
vectors (f(x1), . . . , f(xn)), where f(x) =

∑k−1
i=0 fix

i, fi ∈
F, and xi ∈ F are distinct code locators. Let (y1, . . . , yn) ∈
Fn be some codeword corrupted by channel noise. The list
decoding problem consists in finding all pairs (f(x), σ(x)),
such that deg f(x) < k and σ(xi) = 0 for at most t distinct
xi : f(xi) ̸= yi, so that yiσ(xi) = f(xi)σ(xi), i = 1..n.
Here t is the decoding radius, f(x) identifies the corresponding
codeword, and σ(x) is the error locator polynomial. Observe
that one can recover σ(x) from f(x) and vice versa.

Any such pair of polynomials f(x), σ(x) can be represented
as a bivariate polynomial

Q(x, y) = yσ(x)− f(x)σ(x). (1)

It can be seen that it has n roots (xi, yi). Hence, it belongs to
the module M = [ϕ(x), y − T (x)], where ϕ(x) =

∏n
i=1(x−

xi), and T (x) is a polynomial1 such that T (xi) = yi. Let
the polynomials Q′(x, y) = q00(x)+ yq10(x) and Q′′(x, y) =

1Observe that given an arbitrary T (x) satisfying these constraints one can
obtain the smallest degree interpolation polynomial as T̃ (x) ≡ T (x) mod
ϕ(x). Since ϕ(x) ∈ M, one obtains M = [ϕ(x), y − T (x)] = [ϕ(x), y −
T̃ (x)].
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q01(x) + yq11(x) be another basis of this module. Then any
Q(x, y) ∈M can be represented as

Q(x, y) = a(x)Q′(x, y) + b(x)Q′′(x, y). (2)

Assume now that Q′(x, y) and Q′′(x, y) constitute a
Gröbner basis ofM with respect to (1, k−1)-weighted degree
lexicographic ordering with y ≺ x, so that ydegQ′(x, y) = 0
and ydegQ′′(x, y) = 1. By the properties of Gröbner basis one
obtains that any valid Q(x, y) can be represented as in (2),
where LTQ(x, y) = LT a(x) LTQ′(x, y) or LTQ(x, y) =
LT b(x) LTQ′′(x, y), and the polynomials a(x) and b(x)
satisfying (2) can be recovered via the multivariate division al-
gorithm [7]. This implies that deg b(x) ≤ w2 = t−deg q11(x),
and deg a(x) ≤ w1 = t + k − 1 − deg q00(x). Hence, list
decoding of a Reed-Solomon code can be implemented by
enumerating all such polynomials a(x), b(x), constructing the
corresponding bivariate polynomial Q(x, y) and checking if it
can be factored as in (1), subject to the following constraints:

1) σ(x) must be a valid error locator polynomial.
2) f(x) must agree with (y1, . . . , yn) in sufficiently many

positions.

That is, the algorithm involves the following steps:

1) Construct T (x) : T (xi) = yi, i = 1..n.
2) Find polynomials Q′(x, y) = q00(x) + yq10(x) and

Q′′(x, y) = q01(x) + yq11(x) being a Gröbner basis
of the module M = [ϕ(x), y − T (x)] with respect to
(1, k− 1)-weighted degree lexicographic ordering. This
step is similar to the extended Euclidean algorithm with
an early termination condition, as used in Gao decoding
method [8].

3) [Rational curve fitting] Find all pairs of coprime poly-
nomials a(x), b(x) : deg a(x) ≤ w1 = t + k − 1 −
deg q00(x), deg b(x) ≤ w2 = t− deg q11(x), such that

σ(x) = a(x)q10(x) + b(x)q11(x) (3)

has at most t roots.
4) For each j reconstruct the codeword from symbols yi

such that xi are not roots of σ(x).

The described algorithm can be considered as a frequency-
domain interpretation of the Wu method [6], and has been
independently derived in [9].

Recall, that the original Wu method is based on the ana-
lytical continuation of the Berlekamp-Massey algorithm, and
consists in finding all pairs of polynomials (a(x), b(x)), such
that the polynomial

Λ∗(x) = a(x)Λ(x) + xB(x)b(x) (4)

has at most t distinct roots α−ji , where ji, 1 ≤ i ≤ t,
is the position of the i-th error, and Λ(x) and B(x) are
the polynomials obtained by the Berlekamp-Massey algorithm
from the standard syndrome vector. Application of the Gröbner
basis language makes the derivation of the algorithm much
simpler.

IV. RATIONAL CURVE FITTING

A. Wu method

The main idea of the Wu method is to avoid exhaustive
search for polynomials a(x), b(x). Instead, the appropriate
polynomials can be identified algebraically in a way similar
to the Guruswami-Sudan algorithm. More specifically, given
the polynomials Λ(x) and B(x) (see (4)), the appropriate
pairs of polynomials a(x), b(x) can be identified by find-
ing a polynomial S(x, y) having roots (xi,−

Λ(x−1
i )

x−1
i B(x−1

i )
) of

multiplicity r for some r ≥ 1, and solving the equation
aρ(x)S(x, b(x)/a(x)) = 0, where ρ is the degree of S(x, y)
with respect to variable y. It may happen that B(x−1

i ) = 0
for some i, i.e. some interpolation points may have infinity
as the second component. By definition, S(x, y) has root
(xi,∞) iff ydegy S(x,y)S(x, y−1) has root (xi, 0). However,
the existing bivariate interpolation algorithms [2], [10] cannot
be immediately used to obtain S(x, y), since most of them
construct a basis of the ideal of polynomials with prescribed
roots, and the described set is not an ideal.

Indeed, the polynomials 1 − xy and 1 − x2y have a root
(0,∞). However, the polynomial x(1−xy)−(1−x2y) = x−1
does not have it.

The same problem arises in the reformulated algorithm
based on (3).

B. Interpolation by partially homogeneous polynomials

The above described technical difficulty can be avoided by
introducing partially homogenized polynomials S(x, y, z) =∑ρ

j=0 sj(x)z
ρ−jyj . The following lemma establishes the re-

lationship between the proposed approach and the original Wu
method.

Lemma 1. Let S(x, y, z) =
∑ρ

j=0

∑
i sjix

iyjzρ−j be a
polynomial homogeneous in variables y and z. It has roots
of multiplicity r at points (x0, αy0,−αz0) for any α ∈ F,
where y0 and z0 are not simultaneously zero, if and only if

• Ŝ(x, θ) =
∑ρ

j=0

∑
i sjix

iθj has a root (x0,−y0/z0) of
multiplicity r (for z0 ̸= 0);

• S̃(x, θ) =
∑ρ

j=0

∑
i sρ−j,ix

iθj has a root (x0,−z0/y0)
of multiplicity r (for y0 ̸= 0).

Proof: Assume without loss of generality that z0 ̸= 0.
S(x, y, z) =

∑ρ
j=0

∑
i≥0 sjix

iyjzρ−j has roots of multi-
plicity r at points (x0, αy0,−αz0) if and only if its Hasse
derivatives at these points of total order less than r are equal
to zero, i.e.∑
i′≥u

ρ−w∑
j′=v

(
i′

u

)(
j′

v

)(
ρ− j′

w

)
sj′i′x

i′−u
0

(αy0)
j′−v

(−αz0)j′+w−ρ
= 0

for all u, v, w ≥ 0, s.t. u + v + w < r. Then for w = 0 one
obtains

(−z0)ρ−v
∑
i′≥u

ρ∑
j′=v

(
i′

u

)(
j′

v

)
sj′i′x

i′−u
0

(
−y0
z0

)j′−v

= 0

for all u, v : u + v < r, i.e. (x0,−y0/z0) is a root of
multiplicity r of Ŝ(x, θ) =

∑ρ
j=0

∑
i≥0 sjix

iθj .
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If (x0,−y0/z0) is a root Ŝ(x, θ) of multiplicity r, then

Ŝ(x, θ) =
∑

u+v≥r
v≤ρ

s[u,v](x− x0)
u(θ + y0/z0)

v.

Hence,

S(x, y, z) = zρŜ(x, y/z)

=
∑

u+v≥r
v≤ρ

s[u,v]

(−z0)v
(x− x0)

u(yz0 + zy0)
vzρ−v

=
∑

u+v≥r
v≤ρ

s[u,v]

(−z0)v
(x− x0)

u((y − αy0)z0 + (z + αz0)y0)
vzρ−v.

It can be seen that the polynomial S(x+x0, y+αy0, z−αz0)
does not have any terms of total degree less than r for any α,
so the points (x0, αy0,−αz0) are its roots of multiplicity r.

The following are reformulations of [1, Lemma 4,5].

Lemma 2. Let S(x, y, z) =
∑ρ

j=0 sj(x)y
jzρ−j be a polyno-

mial having root of multiplicity r at points (x0, αy0,−αz0)
for any α, where y0 and z0 are not simultaneously zero. If
a(x), b(x) are polynomials such that z0a(x0) + y0b(x0) = 0,
then (x− x0)

r|S(x, a(x), b(x)).

Proof: Assume w.l.o.g. that z0 ̸= 0. Then by Lemma
1 one obtains that Ŝ(x, θ) =

∑ρ
j=0 sj(x)θ

j has a root
(x0,−y0/z0) of multiplicity r, i.e.

Ŝ(x, θ) =
∑

u+v≥r
v≤ρ

ŝ[u,v](x− x0)
u(θ + y0/z0)

v.

Hence,

S(x, y, z) =
∑

u+v≥r
v≤ρ

ŝ[u,v]

zv0
(x− x0)

u(yz0 + zy0)
vzρ−v.

The statement of the lemma follows from the fact that x0 is
a root of polynomial z0a(x) + y0b(x).

Lemma 3. Let S(x, y, z) =
∑ρ

j=0 sj(x)y
jzρ−j be a poly-

nomial such that wdeg(1,w1,w2) S(x, y, z) < rt, and points
(xi, αyi,−αzi), i = 1..n are its roots of multiplicity r for
any α, where yi and zi are not simultaneously zero. If a(x)
and b(x) are the polynomials such that deg a(x) ≤ w1,
deg b(x) ≤ w2 and zia(xi)+ yib(xi) = 0 for at least t points
(xi, yi, zi), then S(x, a(x), b(x)) = 0.

Proof: By Lemma 2, for any such point (x −
xi)

r|S(x, a(x), b(x)). The degree of g(x) = S(x, a(x), b(x))
is at most wdeg(1,w1,w2) S(x, y, z) < rt. Hence, the only
possibility for a polynomial

∏
i(x− xi)

r of degree rt to be a
divisor of g(x) is S(x, a(x), b(x)) = 0.

The root multiplicity constraints give nr(r + 1)/2 linear
equations. It is possible to solve this system of equations and
obtain the required polynomial if the number of unknowns in
it exceeds the number of equations, i.e.

∑ρ
j=0(rt−jw1−(ρ−

j)w2) = rt(ρ+1)−w ρ(ρ+1)
2 > n r(r+1)

2 , where w = w1+w2.
For w = 0 this implies r = 1, and

ρ > n
r + 1

2t
− 1 =

n

t
− 1. (5)

For w > 0 one obtains

ρl =
2rt− w −

√
D

2w
< ρ <

2rt− w +
√
D

2w
= ρh, (6)

where D = (w+2rt)2−4wnr(r+1) > 0. The latter inequality
implies

r >

(
n− t+

√
n2 − 2tn+ wn

)
w

2(t2 − wn)
. (7)

This can be satisfied if t2−wn ≥ 0. Since any Gröbner basis
of M satisfies deg q11(x) + deg q00(x) = n [5], one obtains
w = w1+w2 = 2t+(k−1)−n. Hence, decoding is possible
if t < n−

√
n(k − 1).

In general, r should be selected as small as possible in order
to minimize the decoding complexity. However, for small r
it may happen that the range given by (6) does not include
any integer numbers. In this case one has to increase r until
suitable ρ is found. In order to guarantee the existence of
integer ρ one has to ensure that ρh−ρl =

√
D/w > 1. Simple

calculation results in

r >
w(n− t)

t2 − wn
.

Theorem 1. Let y = (y1, . . . , yn) be some vector in Fn. Con-
sider polynomials Q′(x, y) = q00(x) + yq10(x), Q

′′(x, y) =
q01(x) + yq11(x) being a Gröbner basis of module M =
[ϕ(x), y − T (x)] with respect to (1, k − 1)-weighted degree
lexicographic ordering, where T (x) : T (xi) = yi, 1 ≤
i ≤ n, ϕ(x) =

∏n
i=1(x − xi). If t < n −

√
n(k − 1)

and parameters r, ρ satisfy (5)–(7), then all codewords c =
(c1, . . . , cn) of (n, k, n − k + 1) RS code over F such that
dH(c, y) = t′ ≤ t, can be identified by polynomials σ(x) =
a(x)q10(x) + b(x)q11(x), such that ci ̸= yi ⇔ σ(xi) = 0,
S(x, a(x), b(x)) = 0. Here S(x, y, z) =

∑ρ
i=0 si(x)y

izρ−i

is a polynomial, such that for all α ∈ F the points
(xi, αq11(xi),−αq10(xi)), 1 ≤ i ≤ n, are its roots of mul-
tiplicity r, and wdeg(1,w1,w2) S(x, y, z) < rt, where w1 =
t+ k − 1− deg q00(x), w2 = t− deg q11(x).

Proof: The constraints (5)–(7) ensure that the required
polynomial S(x, y, z) can be indeed constructed. For any
codeword c there exist polynomials f(x), σ(x) such that
deg f(x) < k, f(xi) = ci, 1 ≤ i ≤ n, σ(x) =

∏
i:ci ̸=yi

(x −
xi). If dH(c, y) = t′ ≤ t, then σ(x) = a(x)q10(x) +
b(x)q11(x), where deg a(x) ≤ t′ + k − 1 − deg q00(x)
and deg b(x) ≤ t′ − deg q11(x). Let ω(x) be a small-
est degree polynomial having t − t′ roots from the set of
non-erroneous position locators {x ∈ {x1, . . . , xn} |ci = yi}.
Then σ′(x) = σ(x)ω(x) = a′(x)q10(x) + b′(x)q11(x)
has t distinct roots, and deg a′(x) ≤ t + k − 1 −
deg q00(x), deg b′(x) ≤ t − deg q11(x). Lemma 3 implies
that 0 = S(x, a′(x), b′(x)) = S(x, ω(x)a(x), ω(x)b(x)) =
ωρ(x)

∑ρ
j=0 sj(x)a

j(x)bρ−j(x) = ωρ(x)S(x, a(x), b(x)), i.e.
S(x, a(x), b(x)) = 0.

Given a polynomial S(x, y, z) satisfying the above con-
straints, the polynomials a(x), b(x) can be recovered by the
modified Roth-Ruckenstein algorithm given in [6]. It appears
that ρ gives an upper bound on the list size, i.e. the number of
distinct error locator polynomials σ(x) which can be obtained
in this way.
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Fig. 1. Comparison of the bounds on list size

In order to analyze the behavior of the obtained bounds, let
us introduce the normalized correctable error fraction τ = t/n
and code rate R = (k − 1)/n. Then (7) can be rewritten as

r >

⌈
(1− τ +

√
R)(2τ +R− 1)

2(τ2 − 2τ −R+ 1)

⌉
.

Similarly,

ρl =
rτ −

√
(τ(r + 1) + R−1

2 )2 − (2τ +R− 1)r(r + 1)

2τ +R− 1
−1

2
.

These estimates apply to the original Wu algorithm as well.
Figure 1 presents the comparison of this estimate and the

one derived in [6] (ρWu =
⌊
rt
w

⌋
=
⌊

rτ
2τ+R−1

⌋
). It can be seen

that the new one is substantially better, especially for small
values of τ . Furthermore, its behavior is much more natural,
i.e. list size increases with decoding radius.

V. EFFICIENT INTERPOLATION

A. Partially homogenized polynomials

As it was shown above, all pairs of polynomials
(a(x), b(x)), such that the polynomial σ(x) = a(x)q10(x) +
b(x)q11(x) has t distinct roots, are given by the equation
S(x, a(x), b(x)) = 0, where S(x, y, z) is a polynomial hav-
ing roots (xi, αq11(xi),−αq10(xi)) of multiplicity r with
(1, w1, w2)-weighted degree less than rt. It can be found
in a Gröbner basis of the ideal Ir of polynomials having
these roots [11]. However, the full Gröbner basis of this
ideal contains a lot of polynomials not satisfying the con-
straint (6), which are useless for decoding purposes. It is
sufficient to consider just a submodule Mρ,r = {S(x, y, z) ∈
Ir|S(x, y, z) =

∑ρ
j=0 sj(x)z

ρ−jyj}, and its Gröbner basis
Q0(x, y, z), . . . , Qρ(x, y, z) such that any Q(x, y, z) ∈ Mρ,r

can be represented as S(x, y, z) =
∑ρ

j=0 Qj(x, y, z)pj(x).
One of polynomials Qj(x, y, z) is guaranteed to satisfy the
weighted degree constraint.

The required Gröbner basis can be found by the iterative in-
terpolation algorithm [2], if one replaces its initialization stage
with Qj(x, y, z) := zρ−jyj . This requires O(n2r5) operations.

Since (7) allows using much smaller r compared to the case of
Guruswami-Sudan algorithm, substantial complexity reduction
can be achieved. However, the complexity still remains quite
high for a practical implementation.

We propose to extend the binary interpolation algorithm pro-
posed in [5] to the case of partially homogenized polynomials.
The main idea of the proposed method is to begin with a
module of low-degree polynomials having roots of small mul-
tiplicity, and use them to obtain a module of polynomials of
higher degree with roots of larger multiplicity. The following
lemma gives the starting point for this sequence of modules.

Lemma 4. Let q11(x) and q10(x) be coprime polynomials.
Then M1,1 = M̂ , where M̂ = [ϕ(x)z, ϕ(x)y, q11(x)z +
q10(x)y]

Proof: Let us first construct linearly independent (over
F[x]) polynomials generating module M̂ , and then show that
they indeed generate M1,1.

The extended Euclidean algorithm can be used to derive the
polynomials u00(x), u10(x), u01(x), u11(x), such that

g11(x) = gcd(ϕ(x), q10(x)) = u10(x)ϕ(x) + u11(x)q10(x),
(8)

and

0 = u00(x)ϕ(x) + u01(x)q10(x). (9)

Let

G̃0(x, y, z) = u00(x)ϕ(x)y + u01(x)(q11(x)z + q10(x)y)

= u01(x)q11(x)z,

G1(x, y, z) = u10(x)ϕ(x)y + u11(x)(q11(x)z + q10(x)y)

= u11(x)q11(x)z + g11(x)y.

These polynomials together with ϕ(x)z represent another
basis of M̂ . Let us further introduce the polynomial
G0(x, y, z) = gcd(ϕ(x), u01(x)q11(x))z. It can be seen that
u01(x)q11(x) = ϕ(x)u00(x)q11(x)

q10(x)
= ϕ(x)

g11(x)
q11(x)u00(x)

q′10(x)
, where

q10(x) = g11(x)q
′
10(x). Since (q′10(x), ϕ(x)) = 1, from (9)

one obtains that q′10(x)|u00(x), i.e. u00(x) = q′10(x)u
′
00(x).

Then (9) implies u′
00(x)ϕ(x) = u01(x)g11(x). It follows

from the properties of the extended Euclidean algorithm that
u00(x)u11(x)− u10(x)u01(x) = (−1)i for some i. Hence,

u′
00(x)

(
q′10(x)u11(x)− u10(x)

ϕ(x)

g11(x)

)
= (−1)i.

Therefore, u′
00(x) = ±1 and u01(x)q11(x) = ± ϕ(x)

g11(x)
q11(x).

Hence,

G0(x, y, z) =
ϕ(x)

g11(x)
(g11(x), q11(x))z =

ϕ(x)

g11(x)
z.

The last equality is due to coprimeness of q11(x) and q00(x).
Since the transformations used to obtain G0(x, y, z) and
G1(x, y, z) from ϕ(x)z, ϕ(x)y, and q11(x)z − q10(x)y are
invertible, they generate the same module M̂ .

Let A(x, y, z) = u(x)z + v(x)y be a polynomial in M1,1,
i.e. u(x)q10(x)−v(x)q11(x) = a(x)ϕ(x) for some a(x). Since
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g11(x)|q10(x), g11(x)|ϕ(x) and gcd(q11(x), q10(x)) = 1, v(x)
is divisible by g11(x). Consider the polynomial

R(x, y, z) = A(x, y, z)− v(x)

g11(x)
G1(x, y, z)

= z

(
u(x)− v(x)u11(x)q11(x)

g11(x)

)
= z

(
u(x)− u11(x)

g11(x)
(u(x)q10(x)− a(x)ϕ(x))

)
= z

(
u(x)

(
1 +

u10(x)ϕ(x)− g11(x)

g11(x)

)
+

a(x)u11(x)ϕ(x)

g11(x)

)
= z

ϕ(x)

g11(x)
(u10(x)u(x) + a(x)u11(x)) .

This polynomial is divisible by G0(x, y, z). Hence, an ar-
bitrary polynomial A(x, y, z) ∈ M1,1 can be expressed via
G0(x, y, z), G1(x, y, z), the basis polynomials of M̂ . There-
fore M1,1 ⊂ M̂ . The inclusion M̂ ⊂ M1,1 follows from the
definition of M1,1 ⊂ I1.

The required interpolation polynomial can be found in Mρ,r,
where the parameters ρ and r must satisfy the constraints
derived in section IV. The proposed approach consists in
construction of a sequence of modules Mu,v , which are
obtained via two operations:

• module expansion, which obtains Mu+1,v from Mu,v;
• root accumulation, which obtains Mu′+u′′,v′+v′′ from

Mu′,v′ and Mu′′,v′′ .
These operations are described in the following subsections.

B. Module expansion

The following lemma reveals a useful property of Gröbner
bases of Mρ,r with respect to lexicographic (y ≺ z ≺ x)
monomial ordering.

Lemma 5. Let Q0(x, y, z), . . . , Qρ(x, y, z) be a Gröbner
basis of Mρ,r with respect to lexicographic term ordering,
where ρ ≥ r. Then Qρ(x, y, z) = gr11(x)y

ρ + Q′(x, y, z),
where g11(x) is given by (8), and Q′(x, y, z) is not divisible
by yρ.

Proof: The polynomials in the considered basis are
given by Qi(x, y, z) =

∑i
j=0 qji(x)y

jzρ−j . Qρ(x, y, z) =∑ρ
j=0 qj,ρ(x)y

jzρ−j is the only polynomial in the con-
sidered basis having terms divisible by yρ. It has roots
(xi, αq11(xi),−αq10(xi)) of multiplicity r. For all i such
that q10(xi) = g11(xi) = 0 this implies that the polynomial
Q̃ρ(x, θ) =

∑ρ
j=0 qρ−j,ρ(x)θ

j has roots (xi, 0) of multiplicity
r. Hence, (x−xi)

r|qρ,ρ(x). Since g11 =
∏

i:q1,1(xi)=0(x−xi),
one obtains gr11|qρ,ρ(x). On the other hand, zρ−rGr

1(x, y, z) ∈
Mρ,r, where G1(x, y, z) = u11(x)q11(x)z + g11(x)y. Since
Q0(x, y, z), . . . , Qρ(x, y, z) is a Gröbner basis with respect to
lexicographic term ordering qρ,ρ(x)|gr11(x). Hence, qρ,ρ(x) =
gr11(x).

This result is similar to the well-known property of
zero-dimensional ideals of F[x, y], which must contain

polynomials Q′(x, y), Q′′(x, y), such that LTQ′(x, y) =
ya,LTQ′′(x, y) = xb in any Gröbner basis.

The following lemma provides a simple property, which can
be used to check if one has obtained a Gröbner basis of the
required module.

Lemma 6. Let Qj(x, y, z), j = 0..ρ be polynomials such
that Qj(xi, αq11(xi), αq01(xi)) = 0r, and ydegQj(x, y, z) =

j, j = 0..ρ. If ∆((Q0(x, y, z), . . . , Qρ(x, y, z)) = n r(r+1)
2 ,

then these polynomials constitute a Gröbner basis of Mρ,r.

Proof: The proof is similar to the one of Lemma 6 in [5].

The main difference of the Wu algorithm compared to the
Guruswami-Sudan one is that one should care not only about
root multiplicity r, but also about polynomial degree ρ. The
interpolation algorithm presented below involves two types of
operations: increasing both r and ρ, and increasing ρ only.
The implementation of the latter operation is based on the
following lemma.

Lemma 7. Consider the module Mρ,r =
[Q0(x, y, z), . . . , Qρ(x, y, z)]. Then Mρ+1,r =
[zQ0(x, y, z), . . . , zQρ(x, y, z), yQ0(x, y, z), . . . , yQρ(x, y, z)]

Proof: Assume without loss of generality that
Q0(x, y, z), . . . , Qρ(x, y, z) is a Gröbner basis of Mρ,r

with respect to lexicographic ordering. The polynomials
yQ0(x, y, z), . . . , yQρ(x, y, z) generate some submodule
of Mρ+1,r. Any polynomial A(x, y, z) ∈ Mρ+1,r can be
represented as A(x, y, z) = aρ+1(x)y

ρ+1 + zA′(x, y, z),
where A′(x, y, z) does not contain terms divisible
by yρ+1. By lemma 5, gr11(x)|aρ+1(x), and
yQρ(x, y) = gr11(x)y

ρ+1 + . . .. Therefore, dividing A(x, y, z)
by yQ0(x, y, z), . . . , yQρ(x, y, z) one obtains a remainder
zR(x, y, z), where R(x, y, z) ∈ Mρ,r. Hence, there exist
q0(x), . . . , qρ(x) : zR(x, y, z) =

∑ρ
j=0 zQj(x, y, z)qj(x).

Observe that the basis given in the statement of the above
lemma is highly redundant, since at most ρ + 2 elements of
Mρ+1,r can be linearly independent over F[x]. This problem
can be avoided by employing the randomized module trans-
formation method originally proposed in [5] in the context
of fast ideal multiplication. Namely, one can construct a
sequence of modules M

(j)
ρ+1,r = {S(x, y, z) = P (x, y, z) +

a(x)Pj(x, y, z)|a(x) ∈ F[x], P (x, y, z) ∈ M
(j−1)
ρ+1,r}, where

M
(0)
ρ+1,r = [zQ0(x, y, z), . . . , zQρ(x, y, z), yQρ(x, y, z)], the

polynomials Pj(x, y, z) are computed as Pj(x, y, z) =
y
∑ρ

i=0 βijQj(x, y, z), where βij are independent random
values uniformly distributed over F, and Qj(x, y, z) are
the basis elements of Mρ,r. This process can be termi-
nated as soon as the condition of Lemma 6 is satisfied.
Figure 3 illustrates the proposed algorithm. The described
approach requires computing at each step a Gröbner basis
(S0(x, y, z), . . . , Sρ+1(x, y, z)) of M (j)

ρ+1,r. This can be imple-
mented with the multidimensional Euclidean algorithm shown
in Figure 2. It assumes that ydegSj(x, y, z) = j, 0 ≤ j < i,
and produces a Gröbner basis with the same property.

Theorem 2. Given a Gröbner basis of Mρ,r, such that
LTSi(x, y, z) = zρ−iyixui , algorithm Expand constructs a
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REDUCE((S0(x, y), . . . , Si−1(x, y)), P (x, y))
1 Si(x, y)← P (x, y)
2 while ∃j : (0 ≤ j < i) ∧ (ydegSj(x, y) = ydegSi(x, y))
3 do if LTSi(x, y)|LTSj(x, y)

4 then W (x, y)← Sj(x, y)− LTSj(x,y)
LTSi(x,y)

Si(x, y)

5 Sj(x, y)← Si(x, y)
6 Si(x, y)←W (x, y)

7 else Si(x, y)← Si(x, y)− LTSi(x,y)
LTSj(x,y)

Sj(x, y)

8 if Si(x, y) = 0
9 then i← i− 1

10 return (S0(x, y), . . . , Si(x, y))

Fig. 2. Construction of a Gröbner basis of M′ =
{S(x, y, z) + a(x)P (x, y, z)|S(x, y, z) ∈ M} out of a Gröbner
basis (S0(x, y, z), . . . , Si−1(x, y, z)) of M

EXPAND((S0(x, y, z), . . . , Sρ(x, y, z)), n, r)
1 G0 ← (zS0(x, y, z), . . . , zSρ(x, y, z), ySρ(x, y, z))
2 j ← 1
3 while ∆(G) > n r(r+1)

2
4 do βij ← RAND(), 0 ≤ i ≤ ρ
5 Pj(x, y, z)← y

∑ρ
i=0 βij · Si(x, y, z)

6 Gj ← REDUCE(Gj−1, Pj(x, y, z))
7 j ← j + 1
8 return G

Fig. 3. Construction of a Gröbner basis of Mρ+1,r out of a Gröbner basis
of Mρ,r

Gröbner basis of Mρ+1,r with average complexity O(n2r4/ρ).

Proof: The proof essentially follows the analysis in [5].
The initial basis G0 constructed on line 1 satisfies the input

constraints of the multidimensional Euclidean algorithm, so on
each iteration it indeed produces a Gröbner basis of M

(j)
ρ+1,r.

If sufficiently many iterations are performed, then the linear
transformation given by random values βij is invertible, so
that one can reconstruct all polynomials ySi(x, y, z) from
the polynomials Pj(x, y, z). Hence, the algorithm converges
eventually to a Gröbner basis of Mρ+1,r.

To estimate the convergence rate, let us compute
the probability that Mρ+1,r is generated by
zSi′(x, y, z), ySρ(x, y, z), Pi′′(x, y, z), 0 ≤ i′ ≤ ρ,
1 ≤ i′′ ≤ δ. These polynomials can be represented
as (zρ+1, zρy, . . . , yρ+1)G(x), where G(x) is a
(ρ + 1) × (ρ + 1 + δ) polynomial matrix. The true Gröbner
basis can be represented in a similar way as a (ρ+1)×(ρ+1)
matrix B(x), which satisfies G(x)U(x) = B(x) for some
polynomial matrix U(x). On the other hand, the above
polynomials are in Mρ+1,r, so G(x) = B(x)W(x). This
implies that W(x)U(x) = I , i.e. for any x0 in F̃, the algebraic
closure of F, W(x0) must be a full-rank matrix. Consider a
decomposition W(x) = (W̃(x)|Ŵ(x)), where W̃(x) is the
(ρ + 2) × (ρ + 2) submatrix given by first ρ + 2 columns
of W(x). One can identify at most N = deg detW̃(x)
pairs of eigenvalues xi ∈ Fσi , where Fσi are some algebraic
extensions of F, and corresponding linearly independent

eigenvectors vi ∈ (Fσi)ρ+1, such that viW(xi) = 0.
Assuming the entries of W (xi) to be independent random
variables uniformly distributed over Fσi , one obtains (see [5]
for details) the following expression for probability of W(x)
being a full-rank matrix for all x:

Θ(δ) =
∑
ω

Pω

N∏
j=1

(
1− 1

|F |jδ

)jωj

,

where summation is performed over all partitions ω such
that

∑
j jωj = N , and Pω is the probability of obtaining a

factorization of detW̃(x) into irreducible over F polynomials
ϕs(x), such that exactly ωj of them have degree j, i.e. their
roots xi are in Fj . This expression is dominated by the
multiples corresponding to j = 1, so the probability of Mρ+1,r

not being generated by ρ + 1 + δ polynomials decreases
exponentially fast with δ, i.e. Expand converges in O(1)
iterations.

Observe that detW̃(x) = det G̃(x)
detB(x) , i.e. N = ∆(G0) −

n r(r+1)
2 , where G̃(x) corresponds to the initial approximation

G0 constructed on line 1. Assuming that all polynomials
Si(x, y, z) in the original Gröbner basis of Mρ,r have the
same (1, w1, w2)-weighted degree C, one obtains that their
leading terms satisfy LTSi(x, y, z) = zρ−iyixui , so that
ui + iw1 + (ρ − i)w2 = C and

∑ρ
i=0 ui = n r(r+1)

2 . This
implies C = (w1 +w2)

ρ
2 + n r(r+1)

2(ρ+1) and ui = (w1 −w2)
ρ
2 +

n r(r+1)
2(ρ+1) + i(w2 − w1). Hence, ∆(G0) =

∑ρ
i=0 ui + uρ =

n r(r+1)
2 +n r(r+1)

2(ρ+1) +
ρ
2 (w2−w1), i.e. N = O(nr2/ρ). During

the WHILE loop, the weighted degree of polynomials in
Gj decreases from C to C ′ = (w1 + w2)

ρ+1
2 + n r(r+1)

2(ρ+2) .
Each polynomial contains at most ρ + 2 monomials of
any fixed (1, w1, w2)-weighted degree between C and C ′.
Hence, the total number of monomials to be cancelled is
n r(r+1)

2(ρ+1) −
w1+w2

2 (ρ + 2). Assuming that each iteration of
Reduce eliminates exactly one of them by summing together
appropriate polynomials, which contain O(nr2) terms, the
total complexity of Expand can be estimated as O(n2r4/ρ).

C. Root accumulation

The proposed root accumulation method essentially follows
the one proposed in [5] for the case of Guruswami-Sudan
algorithm.

Lemma 8. Let Mρ1,r1 = [S0(x, y, z), . . . , Sρ1(x, y, z)] and
Mρ2,r2 = [P0(x, y, z), . . . , Pρ2(x, y, z)] be the modules given
by their Gröbner bases satisfying the constraints of Lemma 6.
Then

Mρ1+ρ2,r1+r2 = [Si(x, y, z)Pj(x, y, z), i = 0..ρ1, j = 0..ρ2].
(10)

Proof: See [5, Lemma 7].
This lemma allows one to generalize the fast ideal multi-

plication algorithm proposed in [5] to the case of the rational
curve fitting problem. Namely, one can replace pairwise poly-
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MERGE((Si(x, y, z), i = 0..ρ1), (Pi(x, y, z), i = 0..ρ2),∆0)
1 for i← 0 to ρ1 + ρ2
2 do Qi(x, y, z) = min0≤j≤v Pi−j(x, y, z)Sj(x, y, z)
3 B = (Q0(x, y, z), . . . , Qρ1+ρ2(x, y, z))
4 while ∆(B) > ∆0

5 do αi ← rand(), 0 ≤ i ≤ ρ1
6 βj ← rand(), 0 ≤ j ≤ ρ2
7 Q(x, y, z)← (

∑ρ1

i=0 αiSi(x, y, z)) (
∑ρ2

i=0 βiPi(x, y, z))
8 B ← REDUCE(B, Q(x, y, z))
9 return B

Fig. 4. Construction of a Gröbner basis of Mρ1+ρ2,r1+r2 .

nomial products in (10) with sufficiently many polynomials

Qj(x, y, z) =

(
ρ1∑
i=0

αijSi(x, y, z)

)(
ρ2∑
i=0

βijPi(x, y, z)

)
,

where αij , βij are random values uniformly distributed
over F. Then the sequence M(j+1) = {Q(x, y, z) +
a(x)Qj(x, y, z)|Q(x, y, z) ∈ M(j)}, where M(0) ⊂
Mρ1+ρ2,r1+r2 , converges to Mρ1+ρ2,r1+r2 . It is reasonable to
construct the initial submodule M(0) in some simple way.
For example, it can be defined as a module generated by
polynomials Si−ji(x, y, z)Pji(x, y, z), i = 0..ρ1 + ρ2, where
ji are selected so that the leading term of the obtained product
is minimized.

Figure 4 presents the algorithm implementing this approach.
One should set ∆0 = n r(r+1)

2 , r = r1 + r2, so that the
WHILE loop terminates as soon as ∆(B) = ∆0. This
condition indicates that the module M(j), generated by the
recently obtained Gröbner basis B, is equal to Mρ1+ρ2,r1+r2 .
Using the techniques described in [5], one obtains that in the
case of r1 = r2 = r, ρ1 = ρ2 = ρ the algorithm converges in
average in O(1) iterations. The number of operations needed
to multiply two polynomials is given by O(ρnr log ρ log(nr)),
and the average number of iterations performed by Reduce
is equal nr ρ−r

ρ+1 , so the average complexity is given by
O(n2r3 ρ−r

ρ+1 ).
In the case of F being a field of characteristic 2 and

Si(x, y, z) = Pi(x, y, z), 0 ≤ i ≤ ρ1 = ρ2, the complexity of
the above algorithm can be slightly reduced by constructing
Q2j(x, y, z) = S2

i (x, y, z), and using the original expression
given on line 2 of the algorithm only for odd i.

D. Binary interpolation algorithm

The algorithms presented above can be used to construct a
Gröbner basis of Mρ,r from the one of M1,1 via a sequence
of intermediate modules Mρi,ri . Theorem 2 suggests that ρi
should be kept as high as possible in order to minimize the
overall complexity2. That is, one should keep the ratio ρi/ri
as close as possible to the final value ρ/r, while respecting
the integrality constraints on ri and ρi. Figure 5 presents the
algorithm implementing this approach. (1, w1, w2)-weighted

2This was not implemented in the initial version of the algorithm presented
in [12]. As a result, the complexity reduction provided by the algorithm given
in this paper is much more significant.

INTERPOLATE(q10(x), q11(x), ϕ(x), n, r, ρ)
1 G ← (zϕ(x), yϕ(x))
2 G ← REDUCE(G, zq11(x)− yq10(x))
3 π ← ⌊ρr ⌋
4 for j ← 1 to π
5 do G̃ = EXPAND(G, n, 1)
6 Π = π
7 B ← G
8 Let r =

∑m
j=0 rj2

j , rj ∈ {0, 1}
9 R← 1

10 for j ← m− 1 to 0
11 do R← 2R
12 Π = 2Π
13 B ← MERGE(B,B, nR(R+ 1)/2)
14 if rj = 1
15 then R← R+ 1
16 Π← Π+ π
17 B ← MERGE(B,G, nR(R+ 1)/2)
18 while ⌊Rρ/r⌋ > Π
19 do B ← EXPAND(B, n,R)
20 Π← Π+ 1
21 return B

Fig. 5. Construction of a Gröbner basis for Mρ,r

degree lexicographic ordering with y ≺ z ≺ c should be used
throughout this algorithm. The algorithm starts by construction
of a Gröbner basis of M1,1 (lines 1–2) using the result of
lemma 4. Reduce algorithm is used to obtain two linearly
independent over F[x] polynomials being a Gröbner basis of
this module. Then this module is lifted to M⌊ρ/r⌋,1, which is
then used as input to the binary exponentiation algorithm. The
variables R and Π correspond to ri and ρi, respectively.

The complexity of this algorithm is dominated by the last
iteration, so it can be estimated as O(n2r3). This comes mostly
from the multi-dimensional Euclidean algorithm (Reduce). It
is possible to speed up the proposed algorithm by employing
the generalization of Knuth-Schönhage algorithm given in
[13].

The input to the proposed algorithm should be either the
polynomials q10(x), q11(x) derived in Section III, or the poly-
nomials Λ(x), xB(x) obtained from the Berlekamp-Massey al-
gorithm, as in the original Wu method. Given the output of this
algorithm, one should select the smallest polynomial S(x, y, z)
in the obtained Gröbner basis with respect to (1, w1, w2)-
weighted degree lexicographic term ordering, and recover all
polynomials a(x), b(x), such that S(x, a(x), b(x)) = 0. This
can be implemented using the generalization of the Roth-
Ruckenstein algorithm presented in [6].

E. List decoding with side information

Wu list decoding algorithm was shown in [14] to be able
to take into account information about error-free positions.
Namely, one may be interested in finding σ(x) such that
its roots are in some subset Θ of the original set of code
locators {x1, . . . , xn}. This enables one to obtain higher error
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correction capability. The proposed interpolation algorithm
extends naturally to this case by replacing ϕ(x) on line 1 with
ϕ′(x) =

∏
xj∈Θ(x− xj).

VI. NUMERIC RESULTS

The re-formulated Wu decoding method together with the
above described binary interpolation algorithm have been
implemented in C++ programming language, and computer
simulations3 were used to investigate their complexity. For
the sake of comparison, the iterative interpolation algorithm
[2] and Guruswami-Sudan decoding method with binary inter-
polation and re-encoding [5] were also implemented. Observe
that the latter algorithm requires different root multiplicity.
In all cases root multiplicity r was set to the smallest value
allowing correction of t errors. The obtained results are given
in Table I.

It can be seen that in all cases the implementation of Wu
decoding method based on the proposed binary interpolation
algorithm outperforms the one based on IIA at least by a factor
of five. Furthermore, since Wu method requires much smaller
root multiplicity r than in the case of Guruswami-Sudan
method, it outperforms even its most efficient implementation,
which is based on the binary interpolation algorithm and re-
encoding trick [4]. However, in some cases the implementation
of the Wu decoder based on IIA turns out to be slower com-
pared to the Guruswami-Sudan algorithm with re-encoding
utilizing the binary interpolation algorithm.

VII. CONCLUSIONS

In this paper an efficient interpolation algorithm for the Wu
list decoding method [6] was given. The interpolation step
was formulated as construction of a partially homogenized
trivariate polynomial. This avoids the problem of roots at
infinity, which arises in the original description of the method,
and enables application of the fast interpolation algorithm
based on the binary exponentiation method. Furthermore,
improved estimates for the parameters of the Wu method were
derived. These estimates, as well as the proposed interpolation
algorithm, which is an extension of the one given in [5], can
be applied to the original Wu method based on the Berlekamp-
Massey algorithm as well.

Numeric results indicate that the proposed approach enables
complexity reduction by a factor at least five compared to the
implementation based on the iterative interpolation algorithm.
In all cases the Wu list decoding method based on the binary
interpolation algorithm outperforms the most efficient existing
implementation of the Guruswami-Sudan algorithm.
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TABLE I
DECODING TIME, S

(255, 219), t = 19 (255, 128), t = 73 (31, 15), t = 10 (63, 31), t = 19 (63, 20), t = 28
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