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Abstract—A novel derivation of the Wu list decoding algorithm
for Reed-Solomon codes is provided. The algorithm is reformu-
lated as construction of a partially homogenized interpolation
polynomial. A generalization of the binary interpolation algo-
rithm, which is based on the novel formulation of the interpola-
tion step, is provided. It enables complexity reducion both with
respect to the Wu method based on the Iterative Interpolation
Algorithm, as well as the Guruswami-Sudan method based on
re-encoding and the binary interpolation algorithm.

I. INTRODUCTION

Reed-Solomon codes are extensively used in modern com-
munication and storage systems. Classical algebraic decoding
algorithms are able to correct up to (d − 1)/2 errors, where
d is the minimum distance of the code. List decoding can
significantly increase the error correction radius at the expense
of possible non-uniqueness of the decoder output. Guruswami
and Sudan have proposed a polynomial-time decoding algo-
rithm for Reed-Solomon codes [1]. However, its complexity
remains too high for practical applications despite of numerous
complexity reduction methods proposed recently [2], [3], [4],
[5]. Wu proposed to use rational curve fitting to derive the
solutions of the list decoding problem from the output of
the classical Berlekamp-Massey algorithm [6]. This approach
requires much smaller root multiplicity, which automatically
results in smaller complexity. However, the complexity still
remains much higher than for the case of classical algorithms.

In this paper a novel derivation of the Wu list decoding
method is given. The new formulation of the interpolation step
avoids roots at infinity, which are used in the description of
the original method [6]. This allows one to introduce the ideal
of interpolation polynomials, enabling thus application of the
fast binary interpolation algorithm, which was introduced in
[5] for the case of Guruswami-Sudan algorithm.

The paper is organized as follows. The new derivation of
the Wu method is given in Section III. The rational curve
fitting problem, which is used in the considered method, is
treated in Section IV. Section V presents a generalization of
the binary interpolation method to the case of rational curve
fitting problem. Numeric results are provided in Section VI.
Finally, some conclusions are drawn.

II. NOTATION

• [Qi, 0 ≤ i ≤ v] =

{
v∑

i=0

pi(x)Qi|pi(x) ∈ F[x]

}
is the

module generated by Qi.

• LT Q is the leading term of the polynomial Q with
respect to some term ordering.

• ydeg Q = j iff LTQ(x, y) = axuyj (in the case of
bivariate polynomials) or LTQ(x, y, z) = axuyjzρ−j (in
the case of trivariate partially homogenized polynomials
with some fixed ρ) for some a ∈ F and u ∈ Z.

• xdeg Q(x, y, z) = u iff LT Q(x, y, z) = axuyjzρ−j for
some a ∈ F and u ∈ Z.

• ∆(B) =
∑s

j=0 xdegBj , where B =
(B0(x, y, z), . . . , Bs(x, y, z)) is a Gröbner basis of
some module.

III. A SIMPLE DERIVATION OF WU ALGORITHM

(n, k, n− k + 1) Reed-Solomon code is defined as a set of
vectors (f(x1), . . . , f(xn)), where deg f(x) < k, and xi ∈ F
are distinct code locators. Let yi = f(xi) + ei, i = 1..n,
be noisy symbols of the received word. The list decoding
problem consists in finding all pairs (f (j)(x), σ(j)(x)), such
that deg f (j)(x) < k and σ(j)(xi) = 0 for at most t distinct
xi, so that yiσ

(j)(xi) = f (j)(xi)σ(j)(xi), i = 1..n. Here
f (j)(x) identifies the corresponding codeword, and σ(j)(x)
is the error polynomial. Observe that one can recover σ(j)(x)
from f (j)(x) and vice versa.

Any bivariate polynomial Q(j)(x, y) = yσ(j)(x) −
f (j)(x)σ(j)(x) has n roots (xi, yi). Hence, it belongs to the
module M = [φ(x), y − T (x)], where φ(x) =

∏n
i=1(x− xi),

and T (x) : T (xi) = yi. Let the polynomials Q′(x, y) =
q00(x)+yq10(x) and Q′′(x, y) = q01(x)+yq11(x) be another
basis of this module. Then

Q(j)(x, y) = a(j)(x)Q′(x, y) + b(j)(x)Q′′(x, y). (1)

Since it is sufficient to find only the error polynomials cor-
responding to different solutions of the list decoding prob-
lem, one is interested in finding all pairs (a(j)(x), b(j)(x)),
such that σ(j)(x) = a(j)(x)q10(x) + b(j)(x)q11(x) has at
most t distinct roots xi. One can consider only coprime
polynomials, since any valid solution of the list decoding
problem satisfies Q(j)(x, f (j)(x)) = 0, and if c(x) divides
both a(j)(x) and b(j)(x), then Q(j)(x, y) = c(x)Q̃(j)(x, y),
so that Q̃(j)(x, f (j)(x)) = 0.

Assume now that Q′(x, y) and Q′′(x, y) constitute a
Gröbner basis of M with respect to (1, k−1)-weighted degree
lexicographic ordering with y ≺ x, so that ydeg Q′(x, y) = 0



and ydeg Q′′(x, y) = 1. Then any valid Q(j)(x, y) is re-
ducible to zero with respect to Q′(x, y) and Q′′(x, y), and
the polynomials a(j)(x) and b(j)(x) satisfying (1) can be
recovered via the multivariate division algorithm. This implies
that deg b(j)(x) ≤ w2 = t − deg q11(x), and deg a(j)(x) ≤
w1 = t + k − 1− deg q00(x).

Hence, the problem of list decoding of Reed-Solomon code
reduces to the following steps:

1) Construct T (x) : T (xi) = yi, i = 1..n.
2) Find polynomials Q′(x, y) = q00(x) + yq10(x) and

Q′′(x, y) = q01(x) + yq11(x) being a Gröbner basis
of the module M = [φ(x), y − T (x)] with respect to
(1, k− 1)-weighted degree lexicographic ordering. This
step is similar to the extended Euclidean algorithm with
early termination condition, as used in Gao decoding
method [7].

3) [Rational curve fitting] Find all pairs of coprime poly-
nomials a(j)(x), b(j)(x) : deg a(j)(x) ≤ w1 = t + k −
1−deg q00(x), deg b(j)(x) ≤ w2 = t−deg q11(x), such
that

σ(j)(x) = a(j)(x)q10(x) + b(j)(x)q11(x) (2)

has at most t roots.
4) For each j reconstruct the codeword from symbols yi

such that xi are not roots of σ(j)(x).
The described algorithm can be considered as a frequency-
domain interpretation of the Wu method [6], which is based
on the analytical continuation of the Berlekamp-Massey algo-
rithm. Recall, that it consists in finding all pairs of polynomials
(λ(x), b(x)), such that the error locator polynomial

Λ∗(x) = λ(x)Λ(x) + xB(x)b(x) (3)

has at most t distinct roots, where Λ(x) and B(x) are the
polynomials obtained by the Berlekamp-Massey algorithm
from the standard syndrome vector. Application of the Gröbner
basis language makes the derivation of the algorithm much
simpler.

IV. RATIONAL CURVE FITTING

It was suggested in [6] to solve the list decoding problem by
finding a polynomial Q(x, y) having roots (xi,− Λ(x−1

i )

x−1
i B(x−1

i )
)

of multiplicity r for some r. However, the existing bivariate
interpolation algorithms cannot be immediately used to solve
this problem, since most of them construct a basis of the ideal
of polynomials with prescribed roots, and the described set is
not an ideal if B(x−1

i ) = 0 for some i. Indeed, the polynomials
1−xy and 1−xy2 have a root (0,∞). However, the polynomial
(1− xy)− (1− xy2) = xy2 − xy does not have this root.

This difficulty can be avoided by introducing partially
homogenized polynomials S(x, y, z) =

∑ρ
j=0 sj(x)zρ−jyj .

Lemma 1. Let S(x, y, z) =
∑ρ

j=0

∑
i sjix

iyjzρ−j be a
polynomial homogeneous in variables y and z. The polynomial
has roots of multiplicity r at points (x0, αy0, αz0) for any α,
where y0 and z0 are not simultaneously zero, if and only if

• Ŝ(x, θ) =
∑ρ

j=0

∑
i sjix

iθj has a root (x0, y0/z0) of
multiplicity r (for z0 6= 0);

• S̃(x, θ) =
∑ρ

j=0

∑
i sρ−j,ix

iθj has a root (x0, z0/y0) of
multiplicity r (for y0 6= 0).

Proof: Assume without loss of generality that z0 6= 0.
S(x, y, z) =

∑ρ
j=0

∑
i≥0 sjix

iyjzρ−j has roots of multiplic-
ity r at points (x0, αy0, αz0) if and only if its Hasse derivatives
at these points of total order less than r are equal to zero, i.e.

∑

i′≥u

ρ−w∑

j′=v

(
i′

u

)(
j′

v

)(
ρ− j′

w

)
sj′i′x

i′−u
0

(αy0)j′−v

(αz0)j′+w−ρ
= 0

for all u, v, w ≥ 0, s.t. u + v + w < r. Then for w = 0 one
obtains

zρ−v
0

∑

i′≥u

ρ∑

j′=v

(
i′

u

)(
j′

v

)
sj′i′x

i′−u
0 (y0/z0)

j′−v = 0, u+v < r

i.e. (x0, y0/z0) is a root of multiplicity r of Ŝ(x, θ) =∑ρ
j=0

∑
i≥0 sjix

iθj .
If (x0, y0/z0) is a root Ŝ(x, θ) of multiplicity r, then

Ŝ(x, θ) =
∑

u+v≥r,v≤ρ s[u,v](x − x0)u(θ − y0/z0)v . Hence,

S(x, y, z) = zρŜ(x, y/z) =
∑

u+v≥r,v≤ρ

s[u,v]

zv
0

(x− x0)u(yz0 −

zy0)vzρ−v =
∑

u+v≥r,v≤ρ

s[u,v]

zv
0

(x − x0)u((y − αy0)z0 − (z −

αz0)y0)vzρ−v . It can be seen that the polynomial S(x+x0, y+
αy0, z + αz0) does not have any terms of total degree less
than r for any α, so the points (x0, αy0, αz0) are its roots of
multiplicity r.

The following are reformulations of Lemma 4 and Lemma
5 in [1].

Lemma 2. Let Q(x, y, z) =
∑ρ

j=0 qj(x)yjzρ−j be a poly-
nomial having root of multiplicity r at points (x0, αy0, αz0)
for any α, where y0 and z0 are not simultaneously zero.
If a(x), b(x) are coprime polynomials such that z0a(x0) +
y0b(x0) = 0, then (x− x0)r|Q(x, a(x), b(x)).

Lemma 3. Let Q(x, y, z) =
∑ρ

j=0 qj(x)yjzρ−j be a poly-
nomial such that wdeg(1,w1,w2) S(x, y, z) < rt, and points
(xi, αyi, αzi), i = 1..n are its roots of multiplicity r for any α,
where yi and zi are not simultaneously zero. If a(x) and b(x)
are the polynomials such that deg a(x) ≤ w1, deg b(x) ≤ w2

and zia(xi) + yib(xi) = 0 for at least t points (xi, yi, zi),
then S(x, a(x), b(x)) = 0.

The root multiplicity constraints give nr(r + 1)/2 linear
equations. It is possible to solve this system of equations and
obtain the required polynomial if the number of unknowns in
it exceeds the number of equations, i.e.

∑ρ
j=0(rt−jw1−(ρ−

j)w2) = rt(ρ+1)−w ρ(ρ+1)
2 > n r(r+1)

2 , where w = w1+w2.
For w = 0 this implies r = 1, and ρ > n r+1

2t − 1 = n
t − 1.

For w > 0 one obtains

2rt− w −√D

2w
< ρ <

2rt− w +
√

D

2w
, (4)



where D = (w+2rt)2−4wnr(r+1) > 0. The latter inequality
implies

r >

(
n− t +

√
n2 − 2tn + wn

)
w

2(t2 − wn)
. (5)

This can be satisfied if t2 − wn ≥ 0. Since for any Gröbner
basis of M one has deg q11(x) + deg q00(x) = n [5], one
obtains w = w1 + w2 = 2t + (k− 1)− n. Hence, decoding is
possible if t < n−

√
n(k − 1). The bound for ρ given by (4)

is much better than the one derived in [6] (ρ = b rt
w c), and

applies to that algorithm as well. This immediately results
in complexity reduction at all steps of both list decoding
algorithms.

V. EFFICIENT INTERPOLATION

As it was shown above, all pairs of polynomials
(a(j)(x), b(j)(x)), such that the polynomial σ(j)(x) =
a(j)(x)q10(x) + b(j)(x)q11(x) has t distinct roots, are given
by the equation S(x, a(j)(x), b(j)(x)) = 0, where S(x, y, z)
is a polynomial having roots (xi, αq11(xi), αq10(xi)) of mul-
tiplicity r with (1, w1, w2)-weighted degree less than rt. This
polynomial must appear in a Gröbner basis of the ideal Ir

of polynomials having these roots. However, the full Gröbner
basis of this ideal contains a lot of polynomials not satisfying
the constraint (4). It is sufficient to consider just a submodule
Mρ,r = {S(x, y, z) ∈ Ir|S(x, y, z) =

∑ρ
j=0 sj(x)zρ−jyj},

and its Gröbner basis Q0(x, y, z), . . . , Qρ(x, y, z) such that
any Q(x, y, z) ∈ Mρ,r can be represented as S(x, y, z) =∑ρ

j=0 Qj(x, y, z)pj(x). One of polynomials Qj(x, y, z) is
guaranteed to satisfy the weighted degree constraint.

The required Gröbner basis can be found by the iterative in-
terpolation algorithm [2], if one replaces its initialization stage
with Qj(x, y, z) := zρ−jyj . This requires O(n2r5) operations.
Since (5) allows using much smaller r compared to the case of
Guruswami-Sudan algorithm, substantial complexity reduction
can be achieved. However, the complexity still remains quite
high for a practical implementation.

We propose to extend the binary interpolation algorithm
proposed in [5] to the case of partially homogenized polyno-
mials. The main idea of the proposed method is to start from a
module of low-degree polynomials having roots of small mul-
tiplicity, and use them to obtain a module of polynomials of
higher degree with roots of larger multiplicity. The following
lemma gives the starting point for this sequence of modules.

Lemma 4. Let q11(x) and q10(x) be coprime polynomials.
Then M1,1 = [φ(x)z, φ(x)y, q11(x)z − q10(x)y]

Proof: The extended Euclidean algorithm can be used
to derive the polynomials u00(x), u10(x), u01(x), u11(x), such
that

g11(x) = gcd(φ(x), q10(x)) = u10(x)φ(x)− u11(x)q10(x),
(6)

and
0 = u00(x)φ(x)− u01(x)q10(x). (7)

Let G̃0(x, y, z) = u00(x)φ(x)y + u01(x)(q11(x)z −
q10(x)y) = u01(x)q11(x)z, G1(x, y, z) = u10(x)φ(x)y +

u11(x)(q11(x)z − q10(x)y) = u11(x)q11(x)z + g11(x)y.
Let us further introduce the polynomial G0(x, y, z) =
gcd(φ(x), u01(x)q11(x))z. It can be seen that u01(x)q11(x) =
φ(x)q11(x)u00(x)

q10(x) = φ(x)
g11(x)

q11(x)u00(x)
q′10(x) , where q10(x) =

g11(x)q′10(x). It follows from (7) that q′10(x)|u00(x). The
polynomials q11(x)u00(x)

q′10(x) and g11(x) are coprime. Hence,

G0(x, y, z) = φ(x)
g11(x)z. Since the transformations used to

obtain G0(x, y, z) and G1(x, y, z) from φ(x)z, φ(x)y, and
q11(x)z − q10(x)y are invertible, they generate the same
module.

Let A(x, y, z) = u(x)z − v(x)y be a polynomial in M1,1,
i.e. u(x)q10(x)−v(x)q11(x) = a(x)φ(x) for some a(x). Since
g11(x)|q10(x), g11(x)|φ(x) and gcd(q11(x), q10(x)) = 1,
v(x) is divisible by g11(x). Let R(x, y, z) = A(x, y, z) +

v(x)
g11(x)G1(x, y, z) = z

(
u(x) + v(x)u11(x)q11(x)

g11(x)

)
=

z
(
u(x) + u11(x)

g11(x) (u(x)q10(x)− a(x)φ(x))
)

=

z
(
u(x)(1 + u10(x)φ(x)−g11(x)

g11(x) )− a(x)u11(x)φ(x)
g11(x)

)
=

z φ(x)
g11(x) (u10(x)u(x)− a(x)u11(x)). This polynomial is

divisible by G0(x, y, z).
The following lemma reveals a useful property of Gröbner

bases of Mρ,r with respect to lexicographic (y ≺ z ≺ x)
monomial ordering.

Lemma 5. Let Q0(x, y, z), . . . , Qρ(x, y, z) be a Gröbner
basis of Mρ,r with respect to lexicographic term ordering,
where ρ ≥ r. Then Qρ(x, y, z) = gr

11(x)yρ + Q′(x, y, z),
where g11(x) is given by (6), and Q′(x, y, z) is not divisible
by yρ.

Proof: Qρ(x, y, z) =
∑ρ

j=0 qj,ρ(x)yjzρ−j is the only
polynomial in the considered basis having terms divisible by
yρ. It has roots (xi, αq11(xi), αq10(xi)) of multiplicity r. For
i : q10(xi) = g11(xi) = 0 this implies that the polynomial
Q̃ρ(x, θ) =

∑ρ
j=0 qρ−j,ρ(x)θj has roots (xi, 0) of multiplicity

r. Hence, (x−xi)r|qρ,ρ(x). Since g11 =
∏

i:q1,1(xi)=0(x−xi),
one obtains gr

11|qρ,ρ(x). On the other hand, zρ−rGr
1(x, y, z) ∈

Mρ,r, i.e. qρ,ρ(x)|gr
11(x). Hence, qρ,ρ(x) = gr

11(x).
The next lemma provides a simple property, which can be

used to check if one has obtained a Gröbner basis of the
required module.

Lemma 6. Let Qj(x, y, z), j = 0..ρ be polynomials such
that Qj(xi, αq11(xi), αq01(xi)) = 0r, and ydeg Qj(x, y, z) =
j, j = 0..ρ. If ∆((Q0(x, y, z), . . . , Qρ(x, y, z)) = n r(r+1)

2 ,
then these polynomials constitute a Gröbner basis of Mρ,r.

Proof: The proof is similar to the one of Lemma 6 in [5].

Lemma 7. Consider the module Mρ,r =
[Q0(x, y, z), . . . , Qρ(x, y, z)]. Then Mρ+1,r =
[zQ0(x, y, z), . . . , zQρ(x, y, z), yQ0(x, y, z), . . . , yQρ(x, y, z)]

Proof: Assume without loss of generality that
Q0(x, y, z), . . . , Qρ(x, y, z) is a Gröbner basis of Mρ,r

with respect to lexicographic ordering. The polynomials
yQ0(x, y, z), . . . , yQρ(x, y, z) generate some submodule



MERGE((Si(x, y, z), i = 0..ρ1), (Pi(x, y, z), i = 0..ρ2), ∆0)
1 for i ← 0 to ρ1 + ρ2

2 do Qi(x, y, z) = min0≤j≤v Pi−j(x, y, z)Sj(x, y, z)
3 B = (Q0(x, y, z), . . . , Qρ1+ρ2(x, y, z))
4 while ∆(B) > ∆0

5 do αi ← rand(), 0 ≤ i ≤ ρ1

6 βj ← rand(), 0 ≤ j ≤ ρ2

7 Q(x, y, z) ← (
∑ρ1

i=0 αiSi(x, y, z)) (
∑ρ2

i=0 βiPi(x, y, z))
8 B ← REDUCE(B, Q(x, y, z))
9 return B

Fig. 1. Construction of a Gröbner basis of Mρ1+ρ2,r1+r2 .

of Mρ+1,r. Any polynomial A(x, y, z) ∈ Mρ+1,r can be
represented as A(x, y, z) = ar(x)yρ+1 + zA′(x, y, z),
where A′(x, y, z) is not divisible by yρ+1. By lemma
5, gr

11(x)|ar(x). Therefore, dividing A(x, y, z) by
yQ0(x, y, z), . . . , yQρ(x, y, z) one obtains a remainder
zR(x, y, z), where R(x, y, z) ∈ Mρ,r. Hence, there exist
q0(x), . . . , qρ(x) : zR(x, y, z) =

∑ρ
j=0 zQj(x, y, z)qj(x).

Observe that the basis given in the statement of
the above lemma is highly redundant, since at most
ρ + 2 elements of Mρ+1,r can be linearly indepen-
dent over F[x]. Hence, we propose to construct a se-
quence of modules M

(j)
ρ+1,r = {S(x, y, z) = P (x, y, z) +

a(x)Pj(x, y, z)|a(x) ∈ F[x], P (x, y, z) ∈ M
(j−1)
ρ+1,r}, where

M
(0)
ρ+1,r = [zQ0(x, y, z), . . . , zQρ(x, y, z), yQρ(x, y, z)], the

polynomials Pj(x, y, z) are constructed as Pj(x, y, z) =
y

∑ρ
i=0 βijQj(x, y, z), where βij are independent random

values uniformly distributed over F, and Qj(x, y, z) are the
basis elements of Mρ,r. For each j one can construct a
Gröbner basis of M

(j)
ρ+1,r using the Reduce algorithm given in

[5]. Obviously, one can recover yQ0(x, y, z), . . . , yQρ(x, y, z)
if sufficiently many polynomials Pj(x, y, z) are constructed.
Hence, the sequence M

(j)
ρ+1,r converges eventually to Mρ+1,r.

In practice, it is sufficient to construct O(1) such polynomials
(see [5] for detailed analysis). Lemma 6 can be used to detect
the convergence moment.

Lemma 8. Let Mρ1,r1 = [S0(x, y, z), . . . , Sρ1(x, y, z)] and
Mρ2,r2 = [P0(x, y, z), . . . , Pρ2(x, y, z)] be the modules given
by their Gröbner bases satisfying the constraints of Lemma 6.
Then

Mρ1+ρ2,r1+r2 = [Si(x, y, z)Pj(x, y, z), i = 0..ρ1, j = 0..ρ2].
(8)

Proof: See [5, Lemma 7].
This lemma allows one to generalize the binary interpolation

algorithm proposed in [5] to the case of reformulated Wu
list decoding method1. Namely, one can replace pairwise

1The algorithm described here can be used in conjunction with the original
Wu method as well.

REDUCE((S0(x, y), . . . , Si−1(x, y)), P (x, y))
1 Si(x, y) ← P (x, y)
2 while ∃j : (0 ≤ j < i) ∧ (ydeg Sj(x, y) = ydeg Si(x, y))
3 do if LTSi(x, y)|LT Sj(x, y)
4 then W (x, y) ← Sj(x, y)− LT Sj(x,y)

LT Si(x,y)Si(x, y)
5 Sj(x, y) ← Si(x, y)
6 Si(x, y) ← W (x, y)
7 else Si(x, y) ← Si(x, y)− LT Si(x,y)

LT Sj(x,y)Sj(x, y)
8 if Si(x, y) = 0
9 then i ← i− 1

10 return (S0(x, y), . . . , Si(x, y))

Fig. 2. Construction of a Gröbner basis of M′ =
{S(x, y, z) + a(x)P (x, y, z)|S(x, y, z) ∈ M} from a Gröbner
basis (S0(x, y, z), . . . , Si−1(x, y, z)) of M

INTERPOLATE(q10(x), q11(x), φ(x), r, ρ)
1 G ← (zφ(x), yφ(x))
2 G ← REDUCE(G, zq11(x)− yq10(x))
3 π ← bρ

r c
4 for j ← 1 to π
5 do G̃ = (zG0, . . . , zGj , yGj)
6 while ∆(G̃) > n
7 do Q ← y

∑j
i=0 rand() · Gj

8 G̃ ← REDUCE(G̃, Q))
9 G ← G̃

10 Π = π
11 B ← G
12 Let r =

∑m
j=0 rj2j , rj ∈ {0, 1}

13 R ← 1
14 for j ← m− 1 to 0
15 do R ← 2R
16 Π = 2Π
17 B ← MERGE(B,B, nR(R + 1)/2)
18 if rj = 1
19 then R ← R + 1
20 Π ← Π + π
21 B ← MERGE(B,G, nR(R + 1)/2)
22 while Π < ρ
23 do B̃ = (zB0, . . . , zBj , yBj)
24 while ∆(B̃) > n r(r+1)

2

25 do Q ← y
∑j

i=0 rand() · Bj

26 B̃ ← REDUCE(B̃, Q))
27 B ← B̃
28 Π ← Π + 1
29 return B

Fig. 3. Construction of a Gröbner basis for Mρ,r

polynomial products in (8) with sufficiently many polynomials

Qj(x, y, z) =

(
ρ1∑

i=0

αijSi(x, y, z)

) (
ρ2∑

i=0

βijPi(x, y, z)

)
,

where αij , βij are random values uniformly distributed



TABLE I
DECODING TIME, S

(255, 219), t = 19 (255, 128), t = 73 (31, 15), t = 10 (63, 31), t = 19 (63, 20), t = 28
Wu+IIA 0.83 1.78 0.48 0.11 11.7
Wu+binary 0.2 0.83 0.088 0.05 4.2
GS+re-encoding+binary 3.55 33 0.20 0.12 –

over F. Then the sequence M(j+1) = {Q(x, y, z) +
a(x)Qj(x, y, z)|Q(x, y, z) ∈ M(j)}, where M(0) ⊂
Mρ1+ρ2,r1+r2 , converges to Mρ1+ρ2,r1+r2 . It is reasonable to
construct the initial submodule M(0) in some simple way.
For example, it can be defined as a module generated by
polynomials Si−ji

(x, y, z)Pji
(x, y, z), i = 0..ρ1 + ρ2, where

ji are selected so that the leading term of the obtained product
is minimized.

Figure 1 presents the algorithm implementing this approach.
One should set ∆0 = n r(r+1)

2 , r = r1 + r2, so that the
WHILE loop terminates as soon as ∆(B) = ∆0. This
condition indicates that the module M(j), generated by the
recently obtained Gröbner basis B, is equal to Mρ1+ρ2,r1+r2

[5].

The described algorithm makes use of the function Reduce,
which constructs a Gröbner basis of the module M′ =
{S(x, y, z)+a(x)P (x, y, z)|S(x, y, z) ∈M}, given a Gröbner
basis (S0(x, y, z), . . . , Si−1(x, y, z)) of some other module
M, and a partially homogenized polynomial P (x, y, z). This
function is shown in Figure 2. It can be considered as a
multi-dimensional generalization of the extended Euclidean
algorithm.

The proposed interpolation algorithm is summarized in
Figure 3. (1, w1, w2)-weighted degree lexicographic ordering
with y ≺ z ≺ c should be used throughout this algorithm. The
algorithm starts by construction of a Gröbner basis of M1,1

(lines 1–2) using the result of lemma 4. Reduce algorithm is
used to obtain two linearly independent over F[x] polynomials
being a Gröbner basis of this module. Lemma 7 together
with the randomized convergence speedup method are used
on lines 3–9 to obtain from it a Gröbner basis of Mπ,1, where
π is selected to ensure that the subsequent steps would lead
to a basis of MΠ,r with Π as close as possible to ρ. The
same approach is used on lines 22–28 to obtain a Gröbner
basis of Mρ,r from the one of Mrb ρ

r c,r. Binary exponentiation
algorithm is utilized on lines 12–21 to obtain a Gröbner basis
of Mπr,r.

Let S(x, y, z) be the smallest element of the basis produced
by this algorithm. One should find all pairs (a(j)(x), b(j)(x)) :
S(x, a(j)(x), b(j)(x)) = 0 (see [6] for a generalization of
the Roth-Ruckenstein algorithm to this case), and recover
the corresponding error locator polynomials as σ(j)(x) =
a(j)(x)q10(x) + b(j)(x)q11(x).

The most computationally intensive part of the pro-
posed method is the multi-dimensional Euclidean algorithm
(Reduce). Its complexity can be reduced by employing the
generalization of Knuth-Schönhage algorithm given in [8].

VI. NUMERIC RESULTS

The re-formulated Wu decoding method together with the
above described binary interpolation algorithm have been
implemented in C++ programming language, and computer
simulations2 were used to investigate their complexity. For
the sake of comparison, the iterative interpolation algorithm
[2] and Guruswami-Sudan decoding method with binary inter-
polation and re-encoding [5] were also implemented. Observe
that the latter algorithm requires different root multiplicity.
In all cases root multiplicity r was set to the smallest value
allowing correction of t errors. The obtained results are given
in Table I.

It can be seen that in all cases the implementation of Wu
decoding method based on the proposed binary interpolation
algorithm outperforms the one based on IIA at least by a factor
of two. Furthermore, since Wu method requires much smaller
root multiplicity r than in the case of Guruswami-Sudan
method, it outperforms even its most efficient implementation,
which is based on the binary interpolation algorithm and re-
encoding trick [4]. However, in some cases the implementation
of the Wu decoder based on IIA turns out to be slower com-
pared to the Guruswami-Sudan algorithm with re-encoding
utilizing the binary interpolation algorithm.

VII. CONCLUSIONS

In this paper a simple derivation of the Wu list decoding
method was given. The interpolation step was formulated as
construction of a partially homogenized trivariate polynomial.
This avoids the problem of roots at infinity, which arises in
the original description of the method, and enables application
of the fast interpolation algorithm based on the binary expo-
nentiation method. Furthermore, improved estimates for the
parameters of the Wu method were derived. These estimates,
as well as the proposed interpolation algorithm, can be applied
to the original Wu method based on the Berlekamp-Massey
algorithm as well.

Numeric results indicate that the proposed approach enables
complexity reduction by a factor at least two compared to the
implementation based on the iterative interpolation algorithm.
In all cases the Wu list decoding method based on the binary
interpolation algorithm outperforms the most efficient existing
implementation of the Guruswami-Sudan algorithm.
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