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Abstract. Application of the cyclotomic Fast Fourier Transform algorithm to the syndrome evaluation problem in
classical Reed-Solomon decoders is described. A number of complexity reduction tricks is suggested. Application of the
algorithm leads to significant reductions in the complexity of syndrome evaluation. Moreover, automatic generation of
the program code implementing the described algorithm is possible.

1 INTRODUCTION

One of the most time-consuming steps in classical decoding of Reed-Solomon codes is evaluation of the syndrome
vector. It is well-known that the Fast Fourier Transform (FFT) can be used to compute it [3], but the practical imple-
mentation of this idea meets certain difficulties. The problem is that most existing FFT algorithms are inefficient if only
a small fraction of Discrete Fourier Transform (DFT) components needs to be computed, which is the case of syndrome
evaluation. This problem has been addressed in e.g. [9].

In this paper, we propose the application of the cyclotomic FFT algorithm [8] to this problem. The structure of
the cyclotomic FFT allows one to efficiently evaluate partial Fourier transforms leading to dramatic reductions in the
complexity. It must be recognized, however, that the application of the suggested algorithm makes sense only if the whole
word to be decoded is fed into the decoder simultaneously, not symbol-by-symbol. Such situation occurs, for example,
in the decoding of a Reed-Solomon outer code concatenated with some sufficiently long inner code, as specified in e.g.
CCSDS 101.0-B-4 and IEEE 802.16 standard [4].

The paper is organized as follows. In section 2 the cyclotomic FFT algorithm is reviewed. Section 3 describes its
application to the syndrome evaluation problem. Section 4 presents an example illustrating the developed techniques.
Finally, conclusions are drawn in Section 5.

2 CycLoTomMIC FFT

The cyclotomic FFT algorithm [8] is based on some properties of linearized polynomials, which are hereafter recalled
for convenience.

Definition 1. A polynomialL(y) over GF(2™) is called linearized if
Liy) =Y Ly, Li € GF(2™).

It can be easily seen tha{a+b) = L(a)-+ L(b) holds for linearized polynomials. This property leads to the following
Lemma, presented here in a slightly modified form with respect to that in [2].
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Lemma 1. Letxz € GF(2™) and let3 = (8o, 51, - - -, Bm—1) be a basis of the field. If

m—1

x = Z ;0,1 € GF(Q),

=0

then

Let us consider cyclotomic cosets module= 2™ — 1 overGF(2):

{0}
{kla k12, k122, ey ].4;127”171}7

ey

{kl7 kl2’ kl227 ctt kl2ml_1}7
wherek, = k;2™+ mod n.

Then any polynomiaf (z Z fixt, f; € GF(2™) can be decomposed as

l m;—1

f(.’L‘) = ZLl( ) WhereL Z fk ;29 mod ny . 1)

In fact, (1) represents a way of grouping indiges< i < n of f(z) terms into cyclotomic cosets: = k.27 mod n.
Obviously, this decomposition is always possible. Note, that the fgroan be represented &g (2°), whereLq(y) =
Joy-

Let us now consider the problem of computing the DFT of a polynorfiial), i.e. computing valueg(a?) =
Z?:’Ol fia® j = 0.n — 1, wherea is a primitive element of7 F(2™). According to (1),f(a’) can be represented
asf(a’) = Zﬁzo Li(a7%). It is known [2], thata*: is a root of a minimal polynomial of degree; | m and thus
belongs to a subfield’F'(2™¢). Thus all the value$ak' )7 lie in GF(2™) and so they can be decomposed in some basis
Bi = (Bios-- -, Bim;—1) Of the subfielda’ ki = Z o ~1 aijsfis, aijs € GF(2). Then, according to Lemma 1,

I m;—1 I m;—1 m;—1
SRTCIED 90 SENCICRED 35 Sy O S s | o
p=0

=0 s=0 =0 s=0
This equation can be represented in matrix form as

where F' and f are vectors consisting of some permutations of eIemEptand fi, respectively,A is a matrix with
elements:;;; € GF(2) andL is a block diagonal matrix with elemenﬁﬂé

It is possible to choose the same basis for all the linearized polynomials of the samedegned) and obtain a
very small amount of different blocks in the matrx This can simplify the problem of constructing a fast algorithm
for multiplication of the matrix by a vectorf over GF(2™). Moreover, if one chooses the normal basjsin (2),
then all the blocks of the matrik are circulant matrices. Thus, the multiplication by this matrix can be considered as a
problem of computing a set of cyclic convolutions of degneg| m. Since a lot of efficient algorithms for computing
cyclic convolutions of various lengths are known, the complexity of the FFT algorithm is significantly reduced. For
computing the product f one can use either the "Four Russians™ algorithm [1], the Lipnitsky-Stroynikova method [7],
or a computer-optimized sequence of additions.

3 COMPUTING THE SYNDROME POLYNOMIAL

In this section, we will solve the problem of computing the syndrome polynomial for classical RS codes by applying
the cyclotomic FFT algorithm in an efficient way. L&tz) = 37! S;z¢ be the syndrome polynomial, wherés the
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number of errors correctable by the code. It is well-known [3] that the coefficients of the syndrome polynomial can be
computed as ,
S; =D(a"),i=0.2t—1

whereD(z) = Z;:Ol D, 2" is the polynomial corresponding to the data vector to be decoded.

It can be recognized that computirtj corresponds to evaluating the partial Discrete Fourier Transfori(af).
However, the direct application of the cyclotomic algorithm (3) would require the evaluation of all cyclic convolutions, so
that the algorithm would have the same number of multiplications as for a complete DFT.

Since both matriced and L are invertible, from (3) the following representation of the inverse DFT can be derived:

f=L1A"'F 4)

It is possible to show that blocks d@f ! consist of elements of basgs which are dual tg3; [5], that is, the blocks of

L~ are also circulants. By recalling that the direct and inverse Fourier transforms differ only by a fixed permutation and
by observing that the inverse of the matfixs also a block diagonal matrix consisting of circulants, we can conclude that
(4) does also represent an FFT algorithm.

However, in this case, if one needs to evaluate only a fraction of the vé@omponents, it is sufficient to perform
multiplications only by those blocks af —! which occupy the corresponding rows of this matrix. This dramatically
reduces the overall number of multiplications. Moreover, we note, that it is not necessary to compute the whole product
A~1F, but only the elements corresponding to the required blocksdf should be evaluated. This is equivalent to
truncating the matrixd—!, thus reducing the overall number of additions.

Most existing cyclic convolution algorithms for computin@:) = a(x)b(z) mod 2™ — 1 can be represented as [6, 3]

co ag bo
C1 ay by
=P |5 - Sy ,
Cm—1 Am—1 bm—l

whereP, S1, S; are some binarpostsummationandpresummationmatrices and: - y denotes componentwise multipli-
cation of vectorg: andy. Hence, (4) can be rewritten as

f=P[(ST) - (S3A7'F)], (5)

where P’)S{ and S, are combined post- and presummation matrices, ard =
(Bo.0s-+ > Bomo—1:B1.00++>Blm,—1,---)" is combined vector ofL.~' elements. More specifically, matrice?,
S1 and S} are block-diagonal matrices composedryfS; andSe matrices corresponding to cyclic convolutions given
by blocks of matrixZ,—! (see Section 4 for the example). Note, that vecior= S;I" can be computed beforehand.
Since most cyclic convolution algorithms have a number of rowS;igonsisting only of 1's, the multiplication df by
these rows would lead t§:;’zo’1 i - Sinceg; is the dual basis of};, this quantity is always equal to 1, so that some
multiplications in (5) are actually not required. Moreover, if one computes partial DFT, it is not necessary to perform
multiplications by all rows ofP’. By striking out these rows, a number of columnsfihbecome zero columns, which
implies in turn that one does not need to compute some products in square brackets in (5). Furthermore, by changing the
order of the basis element ; one can alter the number of non-zero columns remaining after striking out unused rows
and, thus, the number of multiplications to be eliminated. Note, that one can easily check all basis reordering to the best
one, i.e. the one minimizing the number of multiplications.

This optimization is possible due to the fact that cyclic convolution algorithms which are proved to be optimal (such
as Winograd ones [3]) are not optimal anymore if one computes only a fraction of the cyclic convolution components. For
example, the 4-point cyclic convolution algorithm in [3] has the following postsummations matrix:

101 1 000 O01
P:101010010
11010 0100
1100 1 1 00O

If one strikes out the two middle rows, only two zero columns are obtained, but by striking out the first two rows it is
possible to obtain three zero columns.

Note, that the described method for constructing FFT (or syndrome evaluation) algorithm does not require any manual
optimizations and it can be implemented in a computer program. In fact, all examples presented in this paper were
constructed automatically by such a program.
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4 EXAMPLE OF APPLICATION

This section presents a small example illustrating the techniques described above.
A polynomial f (z) = °%_ fiz?, f; € GF(2?) can be represented as

f(x) = Lo(a®) + Li(z) + La(z?)
Lo(y) = foy
Li(y) = fiy + 22 + fay®
La(y) = fsy + fey® + fsy*.

Let (v,v%,~4*),7 = o be a normal basis @& F(23), wherea is a root of the primitive polynomiat® + = + 1. Then the
Discrete Fourier Transform g¢f(z) can be represented as

f(@®) = Lo(@®) + Li(a®) + La(a®) = Lo(1) + L1(7) + L1(v*) + L1 (v*) +
Lo(v) + L2(¥?) + La(v*)

fl@)y = Lo(@®) + Li(a) + Ly(a®) = Lo(1) + L1(v*) + L1 (v*) + La(y)
f(@®) = Lo(a®) + Li(e®) 4+ La(a®) = Lo(1) + L1(7) + Li(v*) + L2(v?)
f(@®) = Lo(a®) 4+ Li(a®) + La(a?) =  Lo(1) + L1(7) + La(7) + La(7*)
fla) = Lo(a®) + Li(a*) + La(0®) = Lo(1) + L1(7) + L1(¥*) + L2(7*)
f@®) = Lo(@”) + Li(a®) + La(@) = Lo(1) + Li(v") + La(7?) + La(v")
f(@®) = Lo(a®) 4+ Li(af) + La(e*) =  Lo(1) + L1(v*) + La(y) + L2(¥?).

These equations can be rewritten in matrix form as

Fy 1111111 Lo(1)
F 1 011100 Li(7)
F 11010 1 0f[Li(w?
F=|F|=]1100 10 1||L(YH]|=
Fy 1110001 Ly(v)
F 1001 011 La(y?)
Fs 1 01 0 1 1 0/ \L2(v%
1 0 0 0 0 0 0 fo
07" 2 2 0 0 0]]|h
0 72 ~* 4 0 0 O f2
Alo 4% 41 42 0 0 0 fa ]| =ALf.
00 0 0 A" ¥ | |f
00 0 0 7 " A1
00 0 0 " A ) \fs

Note, that each non-zero block of the second matrix is circulant.
By inverting matricesA and L, the following Inverse Fourier Transform algorithm can be obtained:

fo 1 0 0 0 0 O O 1 111 1 1 1\ [F

fi 0 v 42 44 0 0 o1 00 1 1 10 F

fo 0 2 ~* 41 0 0 Oof]1 1 01 0 0 1]||F
f=1fil=10 ~+* 4 42 0 0 o0 1 01001 1||FR|=L1A"F

f3 0 0 0 0 ~' 42 A% 1 1 00 1 0 1]|]|F,

fo 0 0 0 0 ~%2 ~4* A1 1 1 0 0 1 0f]|Fs

fs 0 0 0 0 ~* 4 42/ \1 01 1 1 0 0/ \Fg
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Since direct and inverse DFT are symmetrical, we obtain the following expression for computing the DFT:

Fy Jo
Fs f1
. Fy f2 .
F=|F|=LtA"|fs| =L"1A7'f, (6)
Fy Ja
I Is
Iy fe

where " and f are some permutations @t and f;. The following algorithm [3] can be used to compute the 3-point
cyclic convolutionb; (z) = b; o + bi oz + b 12% = (v + vz + v22?) (a0 + a; 17 + a; 22%) mod (23 — 1):

b0 101 1 1117 111(11‘0
: 01 1 A 01 1 :
bi =|ba]l=(1 1 1 0 y a1 =
- L1 o1 110 2 110 _
2 10 1)\ 10 1) \%2
P (Cl . (Sgai))7 1= 1,2.
ot
Sincey++2++* = 1, one can see that multiplication of a vector by each bl ~+* ~1 ] requires 3 multiplications,
4 1 2
v
4 pre- and 5 postsummations ov&F'(2%). By combining this algorithm with (6) one can obtain

Jo
f1
J2

Ja
f5
fs

v 444

v+
v+
v+
v+
v+ 2

3

I
OO OO OO
SO OO === O
O OO R EFE OO
OO OO~ —=O
OO OO O
_= = =0 0 OO
—_ -0 00 oo
O~ = OO oo
_ o = OO OO

Jo
h
f2
fs
Ja
fs
Jo

v+ 41

v+t
v+ 72
v+
v+
v+ 92

I
OO OO OO
S OO == =O
[ e R i = N )
SO OO R RHO
OO O OO
—= = -0 0 00O
—__-0 o000 oo
_— o = OO OO

O = OO OO
DO OHOOORHREFEF OO

— OFR OO R P RMFEFRFEF OO0 R MF,ROFO
— _ OO R OKFREMEFEF OO0OO0O0O R F MO
HORFRRFEFMFEFOFRFOKFRE OO0 F,OKKFO
OR P OFRFFOFRRME RFFROFROODODOO
ORr PR OFRFROF OFRRFRLREFRLRODODOOO
HF R ORFRPRRPRPROOR HOR PR OODOOO

P (ST - S5A7Yf).

Applying the computer optimization one can find a sequence of summations implementing multiplication by binary ma-
trices S5 A~1 and P’ presented above. Evaluation of componentwise product of vectors can be implemented straightfor-
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wardly. Hence one obtains the following FFT-7 algorithm:

Vio=fs+fs W=[fs+W
Vii=fi+Vio Viz=fe+ Io
Vo=fo+Vii Vi=Vi+ Vi3
Ve=fa+Vii Vs=Vi+Vis
Vo = fo+ Va2 Vo=Vs+ Vg
Vie=fa+Vo Vi=Ve+Vig
Fo=fo+Via Vs=V+Vy,
Vig = Vaa Vir=Vsa
Vis = V3 a? Vis = V7 a?
Vig = Viat Vig = Vg a?,
TT'=Vi+Vig T3=V5+Vig
To=Viu+Vis Ty=Vir+Vig
Fs=Vis+T1 F,=Vig+1;
Fs=Vi+T, F=Vs+1}
F3=Vu+1T1 F=V7+1;.

This algorithm requires 6 multiplications and 24 additions and appears to be the best known 7-point GFTZoy.
If one needs to evaluate only, and F; (syndrome components f¢F, 5, 3) Reed-Solomon code ovérF'(2%)), then

(7) reduces to

fo
1 1111111 :}721
F\ (1 0 0 0 1 1001011f2
F)-\0 111 72+ 0101110f3
v+t 00101 11 .
fs
I fe) |
This leads to the following algorithm for computing two components of DFT:
To:=fs+fe; Tri= [fs+T3
Ty:=fot+ fa; Tzs:= Ti+Ts
Ty:=fo+ fz; To:= [fs+T17
T3 := f1+ fa; Tio:= ol
T4 = T0+T2; T11 = a2T5
I5:=To+T1; Tiz:= Tio+T111
Ts := f1+Ty;
F() = Tg; F1 = T4 +T12

Note, that if we change the order of normal basis elements (g:4.5*,~)) this would cause the order of rows in
matrix P to change. Since its rows are in general not symmetric, it is possible to find an order of elements for which
the rows in the required positions are such that the number of zero columns in them is maximal, thus minimizing the
total number of multiplications. The above example does not illustrate this effect, but by studying matrix representation
of cyclic convolution algorithms presented in [3] one can find that complexity savings due to this effect may be very
significant.

Since this is very simple example, it does not show any advantage compared to the conventional syndrome evaluation
methods. However, it demonstrates the main ideas of the proposed method:
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Table 1. Complexity of syndrome evaluation algorithms for some RS codes
Code Suggested Horner Zakharova's

algorithm rule method

(n, k, d) Nivut | Nadd | Nmut | Nadgd | Nmut | Nadd

(255,253,3) | 7 | 508 | 254 | 508 | 7 | 529
(255,251,5) | 17 | 905 | 762 | 1016| 18 | 875
(255,249,7) | 27 | 1250| 1270 | 1524 | 30 | 1268
(255,247,9) | 37 | 1643 | 1778 | 2032 | 41 | 1652

(255,245,11) | 45 | 1909 | 2286 | 2540 | 51 | 2036
(255,243,13) | 55 | 2350 | 2794 | 3048 | 62 | 2391
(255,241,15) | 65 | 2689 | 3302 | 3556 | 74 | 2789
( )
( )

255,239,17 75 2938 | 3810 | 4064 | 85 2989
255,223, 33 149 | 5046 | 7874 | 8128 | 167 | 5440

1. Construction of the inverse cyclotomic FFT algorithm.
2. Elimination of some multiplications by appropriate selection of normal basis ordering.

Table 1 presents the complexity (humber of multiplications and additions) of some syndrome evaluation algorithms
in terms of number of multiplications and additions. We compare the described algorithm with the Horner rule applied to
the syndrome evaluation problem and with the algorithms produced by the FFTDesigner program by T. Zakharova, which
is based on the development presented in [9, 10].

The suggested algorithm is based on the same properties of finite fields as the method presented in [9, 10], but it
employs more efficient multiplication reduction techniques (incomplete cyclic convolution optimization) and summation
optimization. So it considerably outperforms not only the straight-forward rule, but also the Zakharova’'s method.

5 CONCLUSIONS

In this paper we have presented an algorithm for computing syndrome polynomial required by classical Reed-Solomon
decoders. The algorithm is based on cyclotomic FFT and has much smaller complexity than conventional syndrome
evaluation techniques. It also allows automatic construction of highly-optimized program code. It has to be recalled that
the application of the algorithm makes sense only if all symbols of the word to be decoded are supplied simultaneously to
the syndrome evaluation block. This is a quite common situation, e.g. occuring in the decoders of Reed-Solomon codes
concatenated with some other codes.
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