
Multilevel Buckets for Sequential Decoding of Polar

Codes

Nikolai Iakuba, Peter Trifonov

Distributed Computing and Networking Department

Peter the Great St. Petersburg Polytechnic University

Email: {nyakuba,petert}@dcn.icc.spbstu.ru

Abstract—The problem of efficient decoding of polar codes
is considered. A multilevel bucket structure is proposed for
implementation of the stack in the sequential decoding algorithm.
This data structure reduces the complexity of stack operations
with respect to the implementation based on a red-black tree.

I. INTRODUCTION

Polar codes were recently shown to be able to achieve
the capacity of a wide class of communication channels [1].
However, the performance of moderate length polar codes
under the successive cancellation decoding algorithm appears
to be quite poor. This problem was addressed in [2] where a
list decoding algorithm was introduced. It was shown in [3],
that the same performance can be achieved with much lower
complexity by employing a stack-based decoding algorithm.
Further complexity reduction can be obtained by employing
the sequential decoding algorithm presented in [4]. It uses
the information about the quality of non-yet-processed frozen
bit subchannels to reduce the probability of selection of an
incorrect path within the code tree. Additionally, it enables
one to perform decoding in the log-likelihood ratios (LLR)
domain using only comparison and summation operations.

The sequential decoding algorithm requires one to maintain
a stack (priority queue), which can efficiently return the paths
with maximal and minimal metrics. The implementation of the
stack has significant impact on the complexity of the overall
decoding algorithm. The straightforward approach to construct
the stack, which can support the operations required by the
sequential decoder, is to use a red-black tree data structure.

In this paper we describe a more efficient method, which
is based on a multilevel bucket data structure (MBDS). The
multilevel bucket data structure was invented by Denardo and
Fox, and developed further by Ahuja et al. [5]. Its imple-
mentation was further simplified in [6]. MBDS was originally
suggested for the case of monotone sequences of operations
over elements with non-negative integer keys. It enables very
efficient solution of the shortest path problem.

However, MBDS cannot be immediately used in the se-
quential decoding algorithm, since it generates a non-monotone
sequence of operations. In this paper we propose some modifi-
cations to MBDS, which enable its application in the sequential
decoder, and show that this results in substantially smaller
number of comparison operations with respect to the case of
the stack implementation based on a red-black tree.

The paper is organized as follows. Section II provides a
review of polar codes, sequential decoding and MBDS. The

proposed implementation of the stack for sequential decoding
of polar codes is presented in Section III. Numeric results
illustrating the complexity of the proposed approach are given
in Section IV.

II. BACKGROUND

A. Polar codes

An (n = 2m, k, d) polar code is a binary linear block code
generated by some k rows of matrix Gn = BnA

⊗m, where n
denotes the length of the code, k is the number of information
symbols in a codeword, d is the minimal distance of the code,
Bn is a bit-reversal permutation matrix, A = (1 0

1 1) and ⊗m
denotes m-fold Kronecker product.

By aji we denote the row vector (ai, ai+1, . . . , aj). Any

codeword can be represented as cn−1
0 = un−1

0 Gn, where vector

un−1
0 ∈ {0, 1}n is an input sequence, such that uφ contains

information symbol if φ /∈ F , and uφ = 0 (frozen symbol)
otherwise. F ⊂ {0, . . . , n− 1} is the set of n− k indices of
frozen symbols.

It was suggested in [7] to set frozen symbols not to 0,
but to some linear combinations of other symbols of un−1

0 .
Such codes, which are known as polar codes with dynamic
frozen symbols, provide higher minimal distance d compared
to classical polar codes. This results in better performance
under list and sequential decoding.

B. The sequential decoding algorithm

In this section we present a new derivation of the sequential
decoding algorithm, described in [4]. The objective of the
decoding algorithm is to find a codeword un−1

0 maximizing

probability P (un−1
0 |yn−1

0), where yn−1
0 is the received noisy

sequence. Let aji,D denote the subvector of aij consisting

of elements as, s ∈ D ∩ {i, . . . , j}. The sequential decoder
estimates the probability

T (uφ0 , y
n−1
0) = max

un−1

φ+1
:un−1

φ+1,F
=0
P (un−1

0 |yn−1
0) (1)

of transmission of the most probable codeword of the polar

code, given by prefix uφ0 , assuming that the values of uφ0 are
correct. In log-domain this value can be approximated by

T̂ (uφ0 , y
n−1
0) = lnR(uφ0 |yn−1

0) + Ω̂ln(φ), (2)

where
R(uφ0 |yn−1

0) = max
un−1

φ+1

P (un−1
0 |yn−1

0)

The Ω̂ln(φ) value is an estimate of the probability of the event

that the most probable path un−1
0 with prefix uφ0 satisfies the

freezing constraints on symbols uj, j ∈ F , j > φ. The values

Ω̂ln(φ) =
∑

j>φ

log(1 − Pj),

where Pj is the bit error probability in the j-th subchannel

P (yn−1
0 , uj−1

0 |uj) of the polarizing transformation, depend
only on channel properties and can be precomputed offline.
Thus, on each decoder iteration we need to compute only

R̂(uφ0 , uφ+1|yn−1
0) = lnR(uφ0 , uφ+1|yn−1

0).

To obtain an efficient implementation of the sequential
decoding algorithm we follow [2]. Let λ ∈ [0,m], φ ∈ [0, n−1]
and β ∈ [0, 2m−λ− 1] denote layer, phase and branch number
respectively. Following [4], let us define the log-likelihood
ratios (LLR)

Sφm[0] = ln

(

R(uφ0 , 0|yn−1
0)

R(uφ0 , 1|yn−1
0)

)

,

which can be computed as

Sφλ [β]=

{

Q(Sφλ−1[2β], S
φ
λ−1[2β + 1]), φ even

(−1)Cλ[β][0]Sφλ−1[2β] + Sφλ−1[2β + 1], φ odd,

(3)

where Q(a, b) = (−1)sgn(a)+sgn(b) ·min(|a|, |b|),

sgn(a) =

{

0, a > 0

1, a < 0
,

and Cλ[β][0] are the intermediate values of the polarizing
transformation [2]. The initial values for this recursion are

given by S0[j] = ln(
P (0|yj)
P (1|yj)).

Consider ûn−1
φ+1 = argmaxun−1

φ+1

P (un−1
0 |yn−1

0), the sub-

vector un−1
φ+1 of the most probable input vector of the

polarizing transformation with prefix uφ0 . Observe that

R(uφ0 , ũφ+1|yn−1
0) = R(uφ0 |yn−1

0) for ũφ+1 = ûφ+1. For
ũφ+1 = 1− ûφ+1 one obtains

R̂(uφ0 , ũφ+1 = 1− ûφ+1|yn−1
0) = ln(P (uφ0 , ũφ+1|yn−1

0) ·
max
un−1

φ+2

P (un−1
φ+2|u

φ
0 , ũφ+1, y

n−1
0) =

R̂(uφ0 , ûφ+1|yn−1
0) + ln

(

R(uφ0 , ũφ+1|yn−1
0)

R(uφ0 , ûφ+1|yn−1
0)

)

.

Hence one can compute R̂(uφ0 , uφ+1|yn−1
0) as

R̂(uφ0 , uφ+1|yn−1
0) =

{

R̂(uφ0 |yn−1
0), if uφ+1 = sgn(Sφm[0])

R̂(uφ0 |yn−1
0)− |Sφm[0]|, otherwise.

(4)

One can assume R̂(ǫ|yn−1
0) = 0, where ǫ is a zero-length

vector.

The decoder maintains a stack (priority queue) with ca-

pacity Θ, that contains paths uφ−1
0 in the code tree and

corresponding metrics T̂ (uφ−1
0 , yn−1

0). At each iteration the
decoder extracts from the stack a path with the highest metric.

If φ ∈ F , it extends the path with uφ = 0 (for classical polar
codes), computes the metric for the extended path, and pushes
it into the stack.

Otherwise, two copies of the path are constructed, which
are extended with zero and one. The decoder calculates the
corresponding metrics, and pushes two extended paths into the
stack. If the number of paths in the stack is about to exceed
Θ, the paths with minimal metric values are removed from it.

Also the decoder maintains a vector q = (q0, . . . , qn−1),
where qφ is the number of times the decoder has visited phase

φ, i.e. some path uφ−1
0 of length φ was extracted from the

stack. If qφ exceeds some threshold L, all paths uψ−1
0 , ψ ≤ φ,

are removed from the stack. Here L and Θ are the parameters
of the decoder, which affect its complexity and memory
requirements, as well as the decoding error probability.

Hence, the stack used in the sequential decoding algorithm
must support the following operations:

• Push(T, uφ0): insert path uφ0 with metric T into the
stack.

• PopMax(): return a path with the maximal metric
and remove it from the stack.

• PopMin(): return a path with the minimal metric and
remove it from the stack.

• Erase(φ): remove all paths uψ−1
0 with ψ ≤ φ from

the stack.

C. Multilevel bucket data structure

The multilevel bucket data structure (MBDS) is a mono-
tone data structure, that supports Insert and ExtractMin
operations. These operations insert into the MBDS an element
with a non-negative integer key, and extract an element with
the smallest key, respectively. The keys are assumed to be in
range [0, C].

A sequence of operations of a data structure is called
monotone if the corresponding sequence of element keys re-
turned by ExtractMin is non-decreasing. The data structures
that perform such sequences of operations correctly are called
monotone.

Here we give a simplified description of the MBDS [6].
The structure consists of t levels and ∆ = ⌈C1/t⌉ buckets on
each level. Every bucket is represented by a single-linked list,
containing elements and their keys. We number levels from 1
to t, and refer to the level 1 as the lowest level in the structure.
The operations performed on the MBDS cause the elements to
be distributed between buckets, such that the keys of elements
on lower levels are less than the keys of elements on higher
levels.

Let v(u) and µ be a key of some element u in the MBDS,
and the key of the last element returned by ExtractMin,
respectively. For any element u with key v = v(u) one
can determine its position relatively to µ as follows. Let

v =
∑t

s=1 vs∆
s−1 be the base-∆ representation of v, where

vs is the s-th digit. An element u is stored in bucket B(i, j) iff
i = max

vs 6=µs

s and j = vi where B(i, j) denotes the j-th bucket

on the i-th level of MBDS. In other words, i is a position of

INSERT(u)
1 (i, j)← CALCULATEPOSITION(µ, v(u))
2 insert u into B(i, j)

Fig. 1. Insertion of element into the MBDS

EXTRACTMIN()
1 find the lowest non-empty level i
2 find first non-empty bucket j on level i
3 find the element u with minimal key in B(i, j)
4 extract u from B(i, j)
5 µ← v(u)
6 if i > 1
7 then for each element u in B(i, j)
8 do (i′, j′)← CALCULATEPOSITION(µ, v(u))
9 insert u into bucket B(i′, j′)

10 return u

Fig. 2. Extraction of an element with minimal key from the MBDS

the most significant digit in which v and µ differ, and j is the
value of this digit of the key.

Example 1. Let ∆ = 10, µ = 1145326 and u = 1145900.
It can be seen that the most significant digit where u and µ
differ is the third one. Thus the position of u relatively to µ
is (i = 3, j = 9).

By choosing the parameter

∆ = 2⌈(log2 C)/t⌉ (5)

and using the random access memory (RAM) model of compu-
tations one can calculate the element position in constant time.
Let CalculatePosition(µ, z) be the function which finds such
values i, j. Figures 1 and 2 present a description of Insert
and ExtractMin operations of the multilevel bucket data
structure.

In order to search efficiently for the first non-empty level in
the structure, one can maintain an array of flags, that indicates
if the corresponding level is not empty. Using binary search,
one can find the indices of the highest and the lowest non-
empty levels in O(log k) time. Alternatively, it is possible to
find the index of the lowest non-empty level in constant time
using the power of the RAM model.

III. STACK IMPLEMENTATION BASED ON THE

MULTILEVEL BUCKET DATA STRUCTURE

We propose to implement the stack needed by the sequen-
tial decoder using the MBDS. However, some modifications
are required, since the decoder needs to be able to find the
paths both with minimal and maximal metrics, and delete the
elements from the stack. Furthermore, MBDS operates with

non-negative integer keys, while path metrics T̂ (ui0, y
n−1
0) can

take arbitrary real values.

A. From path metrics to integer keys

The real-valued path metrics given by (2) should be
mapped onto non-negative integers, which can be used as keys

in the MBDS. We propose to define this mapping as

v(uφ0) = max
(

0,M − ⌈T̂ (uφ0 , yn−1
0) · a⌉

)

, (6)

where M is a sufficiently large integer.

This mapping can be implemented by multiplying input
LLR values by a, rounding the result of this operation to an
integer, and performing calculations given by (3)–(4) using
integer arithmetic. Then one can obtain path key as

v(uφ0) = max
(

0,Ω′[φ]− R̂(uφ0 |yn−1
0)

)

, (7)

where Ω′[φ] =M − ⌈Ω̂ln[φ] · a⌉.
Applying such mapping may cause two paths with different

metrics to be assigned the same key value. If one of these paths
is a correct one, a decoding error may occur. Hence, a must be
a sufficiently large number. In practice, it should be selected
so that the quantized values [S0[j] · a] fit into a b-bit integer.

Expression (6) ensures that path keys are non-negative.
The value of M should be selected so that the probability of

obtaining a path with zero key v(uφ0) is sufficiently small. Con-
sider the case of AWGN channel with noise power N0 = 2σ2.

Observe that T̂ (uφ0 , y
n−1
0) is a linear combination of at most

n LLR values S0[j] with coefficients in {−1, 1}. Furthermore,

it is an estimate of the final path metric T̂ (un−1
0 , yn−1

0). For a

correct decoding path, T̂ (un−1
0 , yn−1

0)·a is a Gaussian random
variable with mean value 2an/σ2 and variance 4a2n/σ2.

Hence, P{T̂ (un−1
0 , yn−1

0) · a > M} = 1
2 − Φ0(

M−2an/σ2

2a
√
n/σ

),
where

Φ0(z) =
1√
2π

∫ z

0

e−t
2/2dt

One should set M so that a zero key appears with sufficiently
small probability p, i.e.

M = 2na/σ2 + 2
√
naΦ−1

0 (1/2− p)/σ. (8)

Hence one can set the value C = 2M and, taking into account
(5), find values t and ∆ which minimize the average decoding
complexity. Unfortunately, we do not have an analytic expres-
sion for the average complexity of MBDS operations in the
case of sequential decoding. Hence, this optimization requires
one to do simulations.

B. Dealing with non-monotone sequence of operations

Due to transformation (6), the decoder needs to extract at

each iteration a path with the smallest key v(uφ0). However,
the sequence of such keys in the considered case of sequential
decoding of polar codes is non-monotone. That is, after ex-
traction of an element with key µ, the decoder may push into
the stack elements with smaller keys.

In order to support non-monotone sequences of operations,
we introduce an auxiliary level 0 into the MBDS. This level

contains a single bucket B(0, 0). Paths with keys v(uφ0) < µ,
where µ is the smallest path key extracted up to now, are
stored in B(0, 0), as shown in Figure 3. This bucket can be
implemented in the same way as other buckets, or using any
standard priority queue data structure, like Fibonacci heap.

If B(0, 0) is empty, the proposed stack implementation
operates as a classical MBDS. Otherwise, the path u with the

PUSH(u)
1 if v(u) < µ
2 then insert u into B(0, 0)
3 else INSERT(u)

Fig. 3. Insertion of a path into MBDS-based stack

POPMAX()
1 if B(0, 0) is empty
2 then u← EXTRACTMIN()
3 else find minimal v(u) in B(0, 0)
4 extract u from B(0, 0)
5 if l0 ≥ l
6 then µ′ ← µ
7 (i, j)← CALCULATEPOSITION(µ, µ′)
8 µ← v(u)
9 UPDATELOWLEVELS(i, j)

10 return u

Fig. 4. Extracting a path with the highest metric from the MBDS-based stack

smallest key v(u) is extracted from B(0, 0). If, after extraction
of the path from B(0, 0), the number of elements l0 in it is
still at least l, then the value of µ is changed, and the elements
stored in the stack are rearranged in order to obtain a proper
MBDS.

Let i be the position of the most significant digit where µ
and v(u) differ, and j be the value of this digit in the base-∆
representation of µ. Observe, that the keys of elements, stored
on levels 1, 2, · · · , i− 1, have the same value of the i-th digit
in base-∆ representation as µ. Therefore all elements stored
on the specified levels should be moved to the B(i, j). This
operation can be performed by merging of the corresponding
linked lists. Finally, the remaining elements stored in B(0, 0)
should be inserted into an appropriate bucket B(i, j), i > 0,
and removed from B(0, 0).

Figure 4 illustrates the proposed algorithm for finding the
path with the highest metric, i.e. the smallest key. The proposed
rearrangement algorithm is shown in Figure 5.

One needs to optimize the value of l in order to minimize
the average number of operations performed by the proposed
stack implementation. If l is set too high, then B(0, 0) may
contain many elements, so that finding an element with the
minimal key value becomes costly. If l is small, the relatively
expensive UpdateLowLevels operation is executed too often.

The PopMin operation is similar to the PopMax oper-
ation, except that we have to examine the highest non-empty
level in the structure, as shown in Figure 6. This operation

UPDATELOWLEVELS(i, j)
1 for i′ = 1 to i− 1
2 do for each bucket j′ on level i′

3 do move all elements from B(i′, j′) to B(i, j)
4 for each element u in B(0, 0)
5 do INSERT(u)

Fig. 5. Rearrangement of the data stored in the stack into a proper MBDS

POPMIN()
1 find maximal non-empty level index i
2 find maximal non-empty bucket index j on level i
3 Extract element u with maximal v(u) from B(i, j)
4 return u

Fig. 6. Extracting a path with the lowest metric from the MBDS-based stack

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 1.25 1.5 1.75 2 2.25 2.5

F
E
R

Eb/N0, dB

(1024,512,28) oating point
(2048,1024,48) oating point
(2048,1024,48) oating point

(1024,512,28) b=6
(1024,512,28) b=7

(2048,1024,48) b=6
(2048,1024,48) b=7

(2048,683,52) b=6
(2048,683,52) b=7
(2048,683,52) b=8

Fig. 7. Performance of the MBDS-based sequential decoder

does not require updating any element positions and the value
of µ. Recall, that this operation is used by the sequential
decoder in the case of stack overflow for removing paths with
low scores. Bucket B(i, j) selected at line 3 of the algorithm
contains typically many elements with relatively close key (i.e.
metric) values. In order to reduce the complexity, one can avoid
searching for the element with maximal v(u), and take an
arbitrary one. Simulations show that this has negligible impact
on the decoding error probability.

C. Removing short paths

In certain cases the sequential decoding algorithm needs
to kill the paths shorter than some value φ. This requires
removing the corresponding elements from the stack. In order
to avoid searching for these elements in the MBDS, we propose
to delay path removal. That is, we define an integer variable
φ0. As soon as one obtains qφ > L at some phase φ, we

propose to set φ0 = φ. If a path uψ−1
0 , ψ ≤ φ0, is returned

by PopMax operation, then this path is just killed, and the
decoder proceeds to the next iteration.

Delayed path removal may cause the stack to be filled with
invalid paths. If the number of elements stored in the stack
reaches Θ, then one should inspect all these elements, and kill
those corresponding to the paths shorter than φ0. This requires
just removing them from the corresponding buckets. If no such
paths are found, PopMin operation should be used to remove
the paths with the lowest metric.

IV. NUMERIC RESULTS

The proposed implementation of the stack requires only
comparison and bit manipulation operations. Therefore, in this

TABLE I. NORMALIZED AVERAGE NUMBER OF COMPARISONS.

(1024, 512, 28) code, L = 32, Θ = 5000, Eb/N0 = 1
l = 1 l = 2 l = 3 l = 4 l = 5

t=5,∆=8 1.0134 1.0010 1 (158337) 1.0005 1.0017

t=4,∆=16 1.0230 1.0024 1 (132524) 1.0002 1.0013

t=3,∆=32 1.0261 1.0033 1.0002 1 (153874) 1.0007

(1024, 512, 28) code, L = 32, Θ = 5000, Eb/N0 = 1.5
l = 1 l = 2 l = 3 l = 4 l = 5

t=5,∆=8 1 (57959) 1.0001 1.0034 1.0076 1.0121

t=4,∆=16 1.0017 1 (52586) 1.0031 1.0076 1.0124

t=3,∆=32 1.0031 1 (56914) 1.0026 1.0065 1.0109

(1024, 512, 28) code, L = 32, Θ = 5000, Eb/N0 = 2
l = 1 l = 2 l = 3 l = 4 l = 5

t=5,∆=8 1 (27039) 1.0059 1.0123 1.0188 1.0255

t=4,∆=16 1 (25868) 1.0060 1.0128 1.0197 1.0268

t=3,∆=32 1 (26818) 1.0056 1.0121 1.0187 1.0255

(2048, 683, 52) code, L = 32, Θ = 5000, Eb/N0 = 1.5
l = 1 l = 2 l = 3 l = 4 l = 5

t=5,∆=8 1 (58612) 1.0031 1.0075 1.0134 1.0242

t=4,∆=16 1 (53105) 1.0038 1.0090 1.0157 1.0278

t=3,∆=32 1 (58098) 1.0030 1.0077 1.0139 1.0249

(2048, 683, 52) code, L = 32, Θ = 5000, Eb/N0 = 2
l = 1 l = 2 l = 3 l = 4 l = 5

t=5,∆=8 1 (40201) 1.0059 1.0166 1.0324 1.0457

t=4,∆=16 1 (38765) 1.0065 1.0177 1.0341 1.0480

t=3,∆=32 1 (40034) 1.0063 1.0171 1.0329 1.0464

section we report the average number of comparison operations
required by the sequential decoder for different parameters of
the proposed data structure. We consider the case of trans-
mission of BPSK-modulated codewords of (1024, 512, 28),
(2048, 1024, 48) and (2048, 683, 52) polar codes with dynamic
frozen symbols [7] over the AWGN channel.

Figure 7 presents the performance of the sequential de-
coding algorithm based on the proposed stack implementation
for different values of the number of quantization bits b.
For comparison, we report also the results obtained with an
implementation based on red-black tree and floating point
arithmetic. It can be seen that for b = 7 the performance is
almost the same as in the case of floating point arithmetics. It
was shown in [8] that in the case of the successive cancellation
decoding algorithm 5 or 6 quantization bits are sufficient to
reach the decoding performance close to that of the floating
point implementation of the decoder. Extra quantization bits
are needed by the sequential decoder since, for a fixed decod-
ing error probability, it operates at much lower SNR than the
successive cancellation decoder, and is therefore more sensitive
to quantization noise.

Let Ψ(t,∆, l) be the average number of comparisons
performed during the decoding process. Table I presents

the normalized values
Ψ(t,∆,l)

minl Ψ(t,∆,l) for (1024, 512, 28) and

(2048, 683, 52) codes, and different values Eb/N0, t,∆. The
values of minlΨ(t,∆, l) are shown in brackets.

It can be seen, that if the channel has good quality, then
the optimal l value is 1 and the number of comparisons
slightly increases with l. In the case of highly noisy channels
the optimal l value increases, and choosing l = 1 leads to
small overhead. Furthermore, the results, obtained for different
values of t and ∆ behave similarly. Hence, one can set l = 1,
and optimize only t and ∆.

Figure 8 shows the average number of comparisons per-
formed by the sequential decoder for the (1024, 512, 28) code
for the cases of the stack implemented using MBDS and a
red-black tree, provided by the standard C++ library. It can

 10000

 100000

 1e+06

 1 1.5 2 2.5 3

N
u
m

b
e
r

o
f

c
o
m

p
a
ri

s
o
n
s

Eb/N0, db

red-black tree,(2048,1024,48)code,L=256, =10000,l=1
multilevel bucket,(2048,1024,48)code,L=256, =10000,l=1

red-black tree,(1024,512,48)code,L=256, =10000,l=1
multilevel bucket,(1024,512,48)code,L=256, =10000,l=1

red-black tree,(1024,512,48)code,L=32, =5000,l=1
multilevel bucket,(1024,512,48)code,L=32, =5000,l=1

Fig. 8. An average number of comparisons.

be seen, that the average number of comparisons required by
the MBDS-based decoder at Eb/N0 = 2 dB is reduced by
40% compared to the case of the red-black tree.

V. CONCLUSION

In this paper an efficient implementation of the stack
(priority queue) required by the sequential decoding algorithm
for polar codes was presented. The proposed approach employs
only bit manipulation and comparison operations to manage
the paths considered by the decoder, and can be naturally used
with the fixed-point arithmetic, which is required for hardware
implementation. The average decoding complexity was shown
to be less compared to the implementation based on a red-black
tree.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, July
2009.

[2] I. Tal and A. Vardy, “List decoding of polar codes,” in Proceedings of

IEEE International Symposium on Information Theory, 2011, pp. 1–5.

[3] K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE
Communications Letters, vol. 16, no. 10, pp. 1668–1671, October 2012.

[4] V. Miloslavskaya and P. Trifonov, “Sequential decoding of polar codes,”
IEEE Communications Letters, vol. 18, no. 7, pp. 1127–1130, 2014.

[5] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan, “Faster
algorithms for the shortest path problem,” Journal of ACM, vol. 37, no. 2,
pp. 213–223, 1990.

[6] B. Cherkassky, A. V. Goldberg, and C. Silverstein, “Buckets, heaps,
lists, and monotone priority queues,” in Proceedings of the eighth annual
ACM-SIAM symposium on Discrete algorithms, 1997.

[7] P. Trifonov and V. Miloslavskaya, “Polar codes with dynamic frozen
symbols and their decoding by directed search,” in Proceedings of IEEE
Information Theory Workshop, September 2013, pp. 1 – 5.

[8] C. Leroux, A. J. Raymond, G. Sarkis, I. Tal, A. Vardy, and W. J. Gross,
“Hardware implementation of successive-cancellation decoders for polar
codes,” Journal of Signal Processing Systems, vol. 69, no. 3, pp. 305–
315, 2012.

