
Randomized Chained Polar Subcodes

Peter Trifonov

Saint Petersburg Polytechnic University, Russia

Email: petert@dcn.icc.spbstu.ru

Abstract—A generalization of polar subcodes is proposed,

which enables a simple construction of codes of arbitrary length.

The obtained codes are shown to outperform punctured and

shortened polar codes under list/sequential decoding. Further-

more, a simplified Gaussian approximation for polar codes is

presented.

I. INTRODUCTION

Polar codes is a novel class of error-correcting codes, which

asymptotically achieve the symmetric capacity of memoryless

channels, have low complexity construction, encoding and

decoding algorithms [1]. However, the performance of polar

codes of practical length is quite poor. Generalizations of

Arikan polar codes, such as polar codes with CRC [2] and

polar subcodes [3], [4] were shown to provide substantially

better performance under list, stack and sequential decoding

[2], [5], [6]. Another problem with polar codes is that their

length is limited to 2m. Several puncturing, shortening and

extension techniques were suggested for polar codes [7], [8],

[9], [10]. However, the performance of the obtained codes

is not quite good. Furthermore, some of these constructions

require employing two-dimensional Gaussian approximation,

which is highly challenging numerically, or computationally

expensive density evolution [11].

In this paper we propose an alternative method for con-

struction of polar codes of arbitrary length, which is based

on the chaining construction [12]. Essentially, the idea is

to combine several polarizing transformations of different

size, and make their input values linearly dependent. This

enables obtaining codes of arbitrary length without shortening

or puncturing. Furthermore, randomized dynamic freezing

constraints are used to improve the weight distribution of the

obtained code, similarly to the construction introduced in [4],

and obtain performance better than in the case of BCH-based

polar subcodes. We propose also a simplified implementation

of the Gaussian approximation, which avoids evaluation of

transcendent functions.

II. BACKGROUND

A. Channel polarization

A (n = 2m, k) polar code over F2 is a set of vectors cn−1
0 =

un−1
0 Am, where aji = (ai, . . . , aj), Am =

(
1 0
1 1

)⊗m

is a

matrix of the polarizing transformation, F⊗m denotes m-times

Kronecker product of matrix F with itself, ui = 0, i ∈ F , and

F ⊂ {0, . . . , n− 1} is a set of n− k frozen symbol indices.

Let W (y|x), y ∈ Y, x ∈ F2 be a transition probability

function of a binary input memoryless symmetric channel.

Then the Arikan channel transformations are defined by

(W ′
⊞W ′′)(y0, y1|u0) =

1

2

∑

u1∈X
W ′(y0|u0 ⊕ u1)W

′′(y1|u0)

(W ′
� W ′′)(y0, y1, u0|u1) =

1

2
W ′(y0|u0 ⊕ u1)W

′′(y1|u0)

By recursive application of these transformations, one obtains

synthetic bit subchannes

W
(m)
2i =W

(m−1)
i ⊞W

(m−1)
i (1)

W
(m)
2i+1 =W

(m−1)
i �W

(m−1)
i , (2)

where W
(0)
0 = W is the original communication channel.

It is possible to show that the capacities of the obtained

subchannels converge to 0 or 1, and the fraction of subchannels

with capacity close to 1 converges to the capacity of the

original channel W .

In the case of W being the binary erasure channel (BEC)

with erasure probability Z0,0, the obtained subchannels are

also BEC with Bhattacharyya parameters given by

Zm,2i =2Zm−1,i − Z2
m−1,i (3)

Zm,2i =Z2
m−1,i, (4)

so that their capacities can be computed as Im,i = 1 − Zm,i.

For other types of channels W , computing the capacities of the

synthetic bit subchannels requires employing computationally

expensive density evolution [13], [11].

Decoding of polar codes can be implemented using the

successive cancellation (SC) algorithm, which makes decisions

ûi =

{
sgnL

(m)
i (yn−1

0 , ûi−1
0) > 0, i /∈ F

the frozen value of ui, i ∈ F ,
(5)

where the log-likelihood ratios (LLRs)

L
(m)
i (yN−1

0 , ûi−1
0) = L

(m)
i = ln

W
(m)
i (yn−1

0 , ûi−1
0 |ui = 0)

W
(m)
i (yn−1

0 , ûi−1
0 |ui = 1)

are given by

L
(l+1)
2i = 2 tanh−1

(
tanh(L

(l)
i /2) · tanh(L(l)

i+η/2)
)
, (6)

L
(l+1)
2i+1 = (−1)vl,iL(l)

i + L
(l)
i+η, (7)

η = 2m−l−1, (vl,j , vl,j+η) = (vl+1,j , vl+1,j+η)A1, vm,j = ûj ,

and L
(0)
i are the LLRs for the input symbols.

However, since the estimates ûi are constructed without

taking into account freezing constraints on symbols uj , j > i,
this algorithm does not provide ML decoding.

B. Polar subcodes

It is possible to show that the minimum distance of classical

Arikan polar codes is O(
√
n), which is too low for practical

applications [14]. It was suggested in [3] to set frozen symbols

ui, i ∈ F , not to zero, but to some linear combinations of

uj , j < i, i.e.

ui =
∑

j<i

Vsi,juj , i ∈ F , (8)

where V is a (n− k)× n constraint matrix, such that the last

non-zero elements of each row are located in distinct columns,

and si is the index of the row ending in column i. Symbols

ui with at least one non-zero coefficient in the r.h.s. of (8) are

referred to as dynamic frozen. The obtained codes are referred

to as polar subcodes. Techniques for construction of matrix

V , which result in codes with improved minimum distance or

reduced error coefficient, are presented [3], [4]. Decoding of

polar subcodes can be performed using the above described

successive cancellation algorithm and its extensions [2], [6].

C. Gaussian approximation

Finding the set of frozen symbols both for the case of

classical polar codes and polar subcodes requires one to

evaluate the reliability of bit subchannels. Let us assume that

a zero codeword is transmitted. It was suggested in [15]

to approximate the distributions of L
(λ)
i , 0 ≤ i < 2λ, by

Gaussian ones, so that the reliability of each subchannel can

be characterized by the expected values

L(m)
i = Ey

N−1
0

[
L
(m)
i (yN−1

0 ,0)
]

of the LLRs. These values can be computed as

L(λ+1)
2i =φ−1

(
1− (1 − φ(L(λ)i))(1 − φ(L(λ)i+η))

)
(9)

L(λ+1)
2i+1 =L(λ)i + L(λ)i+η , (10)

where

φ(x) =

{
1− 1√

4πx

∫∞
−∞ tanh z

2e
− (z−x)2

4x dz, x > 0,

1, x = 0.
(11)

The initial values for this recursion are given by L(0)i = 2/σ2

for normal codeword symbols ci, L(0)i = 0 for punctured1

symbols, and L(0)i = ∞ for shortened symbols, where σ2 is

the target noise variance. This approach is referred to as one-

dimensional Gaussian approximation (GA) if ∀λ, i : L(λ)i =

L(λ)i+η , and two-dimensional GA otherwise. The bit error rate

in W
(m)
i can be estimated as Pm,i ≈ Q

(√
L(m)
i /2

)
.

1Puncturing means that codeword symbol ci, which may take arbitrary
values, is omitted at the transmitter side. Shortening means that the encoder
ensures that ci = 0, and this symbol is omitted at the transmitter side.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 5 10 15 20

Ξ
(x

)

x

Ξ(x)

(a) Function Ξ(x)

10
−5

10
−4

10
−3

10
−2

10
−1

0 2 4 6 8 10 12 14 16

M
e
a
n
 s

q
u
a
re

d
 e

rr
o
r

m

Ha
Quadratic

(b) Accuracy

Fig. 1: Gaussian approximation

Function φ(x) is rather challenging to implement. An ap-

proximation for it was suggested in [16], but it still involves

transcendent functions, which may take arbitrary small and

large values, and are therefore very difficult to implement in

hardware using fixed-point arithmetic.

III. SIMPLIFIED GAUSSIAN APPROXIMATION

Let us consider design of a polar code of length 2m based

on Gaussian approximation. The main computation burden of

this approach consists in calculation of the non-linear function

Ξ(x) = φ−1
(
1− (1 − φ(x))2

)
,

which employs numerically challenging function φ(x). How-

ever, it turns out that Ξ(x) is very well-behaved, as shown in

Figure 1a. We propose to approximate the latter function with

a piecewise quadratic one

Ξ(x) ≈





0.9861x− 2.3152, x > 12

x(9.005 · 10−3x+ 0.7694)− 0.9507, x ∈ (3.5, 12]

x(0.062883x+ 0.3678)− 0.1627, x ∈ (1, 3.5]

x(0.2202x+ 0.06448), otherwise.
(12)

This approximation was obtained by minimum squared error

curve-fitting. It can be seen that the complexity of polar code

design using this approximation is essentially the same as in

the case of the BEC recursion (3)–(4), since both of them are

based on evaluation of quadratic polynomials. This operation

involves only summations and multiplications, and avoids any

transcendent functions. Figure 1b shows the mean squared

error of logPm,i for Es/N0 = 0 dB for various values of

m. It can be seen that the proposed approach provides almost

the same accuracy as Ha et al approximation [16].

IV. CHAINED POLAR SUBCODES

A. Motivation

Most of the existing techniques for construction of polar

codes of arbitrary length are based on puncturing and short-

ening [7], [8], [9], [10]. In general, puncturing and shortening

does affect the reliability of bit subchannels, and it must be

properly taken into account in (9)–(10) while constructing F .

In this case L(λ)i and L(λ)i+η may be different, so that one cannot

use the simple approximation presented in Section III.

= =

x3 x4

= =

polarizing transformation 1

= = = =

0 0 0

x0

0

x1 x2

= = = =

= = ==

polarizing transformation 0

u0
(3)

u1
(3)

u2
(3)

u3
(3)

u4
(3)

u5
(3)

u6
(3)

u7
(3) u0

(2)
u1

(2)
u2

(2)
u3

(2)

Fig. 2: Encoding diagram for (12, 5) chained code

Therefore, we propose to design codes, which can be de-

coded by a simple generalization of the successive cancellation

algorithm or its derivatives, but do not require shortening or

puncturing, and can be constructed using the simple one-

dimensional Gaussian approximation method presented in

Section III.

B. Code construction

We propose to construct a code of length n =
∑ζ−1

j=0 2
mj

and dimension k, such that its codewords represent a con-

catenation of the output vectors of polarizing transformations

Ami
, the input vectors of these polarizing transformations have

some linear dependencies, and mj > mj+1, 0 ≤ i < ζ − 2.

Namely, the codeword is obtained as

c = (u(m0), . . . , u(mζ−1))︸ ︷︷ ︸
u

diag(Am0 , . . . , Amζ−1
)

︸ ︷︷ ︸
A

,

where uV
T = 0, and V is a constraint matrix with rows

ending in distinct columns. Such code can be still treated in the

framework of dynamic frozen symbols introduces in Section

II-A. Figure 2 illustrates an encoder for the proposed code

construction.

It is possible to implement decoding of chained polar sub-

codes by applying the above described SC decoding algorithm

to the parts of the received sequence corresponding to the

output of different polarizing transformations Ami
.

Obviously, in this case by setting mζ−1 →∞ and defining

V as a matrix having weight-1 rows, having 1’s in distinct

columns corresponding to the least reliable bit subchannels

W
(mi)
j , one can obtain capacity-achieving codes. However, we

are interested in obtaining finite-length codes, which provide

good performance under the (list) SC algorithm.

Chained polar subcodes were originally introduced in [12],

where the classical X4 construction based on BCH codes was

used to obtain codes with a prescribed minimum distance. In

this paper we present an alternative approach, which results

in codes with improved performance under list/sequential SC

decoding with small list size.

C. Merging bit subchannels

1) Extending a polar code by one symbol: Consider con-

struction of a chained code of length n = 2m0 + 1, i.e. let

m1 = 0, ζ = 2. Assume that all symbols corresponding to

bit subchannels W
(mj)
i , with reliability L(mj)

i less than some

threshold T are frozen, 0 ≤ j < 2, 0 ≤ i < 2mj . Let k be the

dimension of the obtained code. However, if u
(m1)
0 is frozen, it

may be possible to obtain a code of dimension k+1. Indeed, in

this case there exists at least one bit subchannel W
(m0)
i with

reliability less than the reliability of W
(m1)
0 , so that u

(m0)
i is

also frozen. Let

i0 = arg max
i:L(m0)

i
<T

L(m0)
i

be the index of the most reliable bit subchannel corresponding

to a frozen u
(m0)
i0

. We propose to define merged subchannels

W
(m0,m1)
i0,0

=W
(m0)
i0

⊞W
(m1)
0 (13)

W
(m0,m1)
i0,1

=W
(m0)
i0

�W
(m1)
0 (14)

If the reliability L(m0)
i0

+ L(m1)
0 of W

(m0,m1)
i0,1

is better than

T , then one can transmit one more symbol over this bit

subchannel. This corresponds to V being a (2m0 − k) × n
matrix having 2m0 − 1 − k weight-1 rows, and one weight-2

row, containing 1’s in positions i0 and 2m0 .

D. General case

The above approach can be recursively extended to the case

of arbitrary length n as follows.

• Let the codes of length 2µ be obtained as classical polar

codes.

• Let the codes of length 2µn, where n > 1 is odd, be

obtained as generalized concatenated codes with inner

Arikan polar codes of length 2µ, and outer codes of length

n, recursively constructed with this method.

• Let the codes of length 2µn+ 1, where n is odd, be ob-

tained by applying the construction described in Section

IV-C1 to a code of length 2µn, recursively constructed

with this method.

Let us describe the code construction method in more details.

We propose to construct constraint matrix V so that the

data symbols, which are mapped onto insufficiently reliable bit

subchannels corresponding to some polarizing transformation

Amj
, are repeated over a subchannel in another polarizing

transformation Amp
. Such operation will be referred to as

symbol boosting. Boosting enables one to improve the reli-

ability of the corresponding symbols, reducing thus the prob-

ability of error under successive cancellation decoding. Let

u = (u(m0), . . . , u(ms−1)) be the input vector of the combined

polarizing transformation given by matrix A. We call symbols

u
(mj)
i and u

(mp)
q , mj > mp, adjacent iff ⌊i2mp−mj)⌋ = q.

In order to simplify the design of the code and the decoder,

we propose to apply boosting only to adjacent symbols.

Essentially, this results in a generalized concatenated code (see

[17], [15] for definition and details) with inner Arikan polar

ALLOCATE(n, k,L(0)0)

1 Let n =
∑ζ−1

i=0 2mi ,mi > mi+1

2 L(mi)
2j ← Ξ(L(mi−1)

j),L(mi)
2j+1 ← 2L(mi−1)

j , 0 ≤ j < 2mi−1

3 T0 = 0; k0 = n;T1 = (n+ 1)L(0)0 ; k1 = 0
4 while k0 > k1
5 do for j = 0, . . . , ζ − 1, i = 0, . . . , 2mj − 1
6 do T ← (T0 + T1)/2

7 if L(mj)
i ≤ T

8 then u
(mj)
i ← F

9 if u
(mj)
i = F

10 then for p← 0 to j
11 do ip = arg max

v:u
(mp)
v =F

⌊v2mj−mp⌋=i

L(mp)
v

12 t0 ← max
0≤t<j

∑j
q=t L

(mq)

iq
>T

t

13 if t0 exists

14 then u
(mt0)

it0
← U

15 u
(mp)
ip

← A, t0 < p ≤ j

16 K ←
∣∣∣
{
(j, i)|u(mj)

i = U, 0 ≤ i < 2mj , 0 ≤ j < ζ
}∣∣∣

17 if K < k
18 then T1 ← T ; k1 ← K
19 else T0 ← T ; k0 ← K

20 u
(mj)
i ← F for all i, j : u

(mj)
i = A

Fig. 3: Initial symbol allocation

codes of length 2mζ−1 , and outer chained polar code obtained

recursively using the above described approach.

The proposed construction assumes that all symbols with

reliability less than some threshold T are frozen. Setting

T = T0 = 0 and T = T1 = (n + 1)2/σ2 results in rate-

1 and rate-0 codes, respectively. The value of T ∈ (T0, T1)
needed to achieve the target code dimension (i.e. the number

of unfrozen symbols) k can be determined iteratively using the

bisection method or stored in a pre-computed table. Observe

that this approach avoids sorting of n values L(m)
i , which may

be challenging to implement in hardware for large m.

We propose a two-step method for symbol merging. The

first step, called initial symbol allocation, is to identify the

unfrozen symbols. By abuse of notation, we assign to variables

u
mj

i states F,U,A, which denote that the corresponding

symbol is frozen, unfrozen, or auxiliary, respectively. The

corresponding algorithm is shown in Figure 3. The algorithm

presented in Figure 4 ensures that the value of each symbol

u
(mt)
it

, which is declared unfrozen in step 14 above, is essen-

tially transmitted over several subchannels W
(mp)
ip

, t ≤ p ≤ j,

so that its reliability is improved. In order to ensure that

these subchannels are not used for transmission of any other

symbols, we have to declare them auxiliary.

The second step, called symbol boosting, is to construct

the specific constraint matrix V. Let zmj,i = i +
∑j−1

p=0 2
mp

BOOST(u
(mi)
j)

1 R← 0;V← 0(n−k)×n

2 for j ← 0 to ζ − 1
3 do for i← 0 to 2mj − 1
4 do wzmj,i

← 2wt(i)

5 if u
(mj)
i = F

6 then VR,zmj,i
← 1;Pzmj,i ← R

7 for p← 0 to j − 1

8 do ip = arg min
⌊i′2mj−mp⌋=i

u
(mp)

i′
=U

L(mp)
i′

9 if ip exists

10 then VR,zmp,ip
← 1

11 L(mp)
ip

← L(mp)
ip

+ L(mj)
i

12 R← R + 1
13 else for p← 0 to j − 1

14 do ip = arg max
⌊i′2mj−mp⌋=i

u
(mp)

i′
=F

L(mp)
i′

15 if ip exists

16 then VPzmp,ip
,zmj,i

← 1

17 Pzmj,i
← Pzmp,ip

18 u
(mj)
i ← F;u

(mp)
ip

← U

19 L(mp)
ip

← L(mp)
ip

+ L(mj)
i

20 return V, wn−1
0 , R

Fig. 4: Symbol boosting

denote the position of symbol u
(mj)
i , 0 ≤ i < 2mj , in

vector u = (u(m0), . . . , u(ms−1)). We also use a shorthand

notation u[zmj,i] = u
(mj)
i . Figure 4 illustrates the algorithm.

It identifies the frozen symbols, which can be used to boost

unfrozen ones, and constructs constraints, which ensure that

the values of such unfrozen symbols are transmitted over the

subchannels corresponding to frozen symbols, i.e. step 10 of

the algorithm boosts u
(mp)
ip

by u
(mj)
i , p < j. Furthermore,

unfrozen symbols are identified, which can be boosted by

some frozen symbols (step 16).

Observe that step 10 of Boost algorithm may cause multiple

unfrozen symbols to be boosted by the same frozen symbol,

as shown in the below example. Exact evaluation of the reli-

ability L(mp)
ip

of the obtained combined channels may require

employing the two-dimensional Gaussian approximation. In

order to keep the complexity of code construction as low as

possible, and given rareness of such cases, we use a slightly

inaccurate expression in step 10. The values wj computed by

the above algorithm are equal to the weight of the codewords

corresponding to uj = 1, ui = 0, i 6= j, j /∈ F . These values

are used in Section IV-E1 for construction of dynamic freezing

constraints.

Example 1. Let us apply the above described method for

construction of a (n = 7, k = 4) code for AWGN channel

with σ = 0.93. One has m0 = 2,m1 = 1,m2 = 0.

Gaussian approximation can be used to compute L(2) =
(0.27, 2.0, 2.75, 9.14),L(1) = (1.00, 4.57),L(0) = (2.28) . Let

T = 2.7.

• Initial Symbol Allocation:

– Frozen symbols: u
(2)
0 , u

(0)
0

– Unfrozen symbols: u
(2)
1 , u

(2)
2 , u

(2)
3 , u

(1)
1

– Auxiliary symbols:u
(1)
0

• Symbol boosting:

– boost u
(2)
1 by u

(1)
0 : L(2)1 = 3.0

– boost u
(1)
1 , u

(2)
2 by u

(0)
0 : L(1)1 = 6.85,L(2)2 = 5.03

This results in constraint matrix

V =



1 0 0 0 0 0 0
0 1 0 0 1 0 0
0 0 1 0 0 1 1


 .

The corresponding check matrix of the code is given by H =

VAT =



1 1 1 1 0 0 0
0 1 0 1 1 1 0
0 0 1 1 0 1 1


 . The obtained code is

equivalent to (7,4,3) Hamming code.

It can be seen that the complexity of the initial symbol allo-

cation algorithm is O(n). The complexity of the symbol boost-

ing algorithm is
∑ζ−1

j=0 2
mj (1 +

∑j−1
p=0 2

mp−mj) = O(ζn).
Note that a method for jointly increasing the length and

minimum distance a linear block code was suggested in [18].

However, the codes obtained with that method do not possess

an efficient decoding algorithm.

E. Dynamic freezing constraints

1) Eliminating low-weight codewords from the code: The

performance of error correcting codes under a near-ML decod-

ing algorithm at high SNR depends on their minimum distance

d and error coefficient Ad, i.e. the number of codewords of

weight d. In order to reduce Ad and, possibly, increase d we

propose to impose dynamic freezing constraints onto symbols

u
(m)
i , which remain unfrozen after application of the above

described code construction algorithm, and have low weight

wzm,i
of the corresponding rows of the code generator matrix.

Any non-zero minimum-weight codeword has u
(m)
i = 1 for at

least one such pair (m, i).
Therefore, we propose to employ the method described in

Section IV-D to obtain a code of dimension k + s, and then

take its pseudo-random k-dimensional subcode. This can be

implemented as shown in Figure 5. This algorithm selects the

last unfrozen symbol of the smallest possible index weight, and

generates a linear constraint with random coefficients, which

involves this symbol and other symbols, which correspond to

outer codes, having smaller or equal indices in the interlinked

generalized concatenated code (see [3] for the definition)

representation of the obtained code.

Good performance/complexity tradeoff can be obtained by

setting s = log2 n. The freezing constraints obtained with this

method are referred to as type-A ones.

SUBCODE(un−1
0 , wn−1

0 , s,V, R)
1 for ω = 1, 2, 4, . . .
2 do for i = n− 1, . . . , 1, 0
3 do if s = 0
4 then return

5 else if ui = U ∧ wi < ω
6 then i0 ← i;P ← 0
7 while i0 ≥ 2mP

8 do i0 ← i0 − 2mP ;P ← P + 1
9 for p← 0 to P

10 do VR,z
p,i02mp

← 1
11 for j ← 0 to i02

mp − 1
12 do VR,zp,j ← RAND()
13 R← R+ 1; s← s− 1
14 return V

Fig. 5: Construction of type-A dynamic freezing constraints

2) Code design for improved list decodability: The perfor-

mance of polar codes under the Tal-Vardy algorithm depends

not only on their distance properties, but also on the probability

of the correct path being killed at an early phase of the

decoding algorithm. In order to improve the performance of

the obtained codes, we propose to select t frozen symbols with

the highest values of L(mj)
i , 0 ≤ j < s, and modify the cor-

responding rows Pzmj,i of the constraint matrix. Namely, we

propose to set VP (zmj,i),zs,h , 0 ≤ h < i2ms−mj , 0 ≤ s ≤ j, to

independent equiprobable random binary values. The obtained

dynamic freezing constraints are referred to as type-B ones.

Simulations suggest that selecting t = min((n − k)/2, 30)
results in good codes with a wide range of parameters,

although better performance can be obtained by more careful

selection of this value.

The proposed construction enables the list decoder to

quickly penalize incorrect paths, reducing thus the probability

of the correct path being killed.

V. DECODING

The proposed codes can be decoded using the generalized

successive cancellation algorithm introduced in [12], as well as

its list or sequential extensions [19], [6]. Observe that careful

selection of the decoding schedule, i.e. the order of processing

of the symbols from different polarizing transformations, is

needed to obtain good performance. A simple greedy algo-

rithm for construction of a decoding schedule for chained polar

subcodes was presented in [12].

VI. NUMERIC RESULTS

Figure 6 illustrates the performance of the proposed ran-

domized chained polar subcodes (PS) for the case of sequential

decoding with list size 32. For comparison, we report also the

results for polar codes with quasi-uniform puncturing [10],

the bit-reversal shortened codes introduced in [20], BCH-based

chained polar subcodes [12], polar subcodes of extended BCH

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 1 1.5 2 2.5 3 3.5

F
E

R

Eb/N0, dB

(320,160) Randomized chained PS
(320,160) Bit reversal shortening, CRC-24

(320,160) QUP, CRC-24
(320,160) Bit reversal shortening, CRC-8

(160,40) Randomized chained PS
(160,40) Bit reversal punctured, CRC-8

(200,100) Randomized chained PS
(200,100) BCH chained PS

(200,100) BCH shortened PS
(200,100) Turbo

Fig. 6: Performance of randomized chained polar subcodes

−4

−2

0

2

4

6

8

 0 200 400 600 800 1000

E
s
/N

0
 t

o
 a

c
h

ie
v
e

 F
E

R
=

1
0

−
2

Code dimension

BPSK, L=32, sequential decoding

chained R=0.2
chained R=0.33
chained R=0.4
chained R=0.5

chained R=0.66
chained R=0.75
chained R=0.83

shortened R=0.2
shortened R=0.33
shortened R=0.4
shortened R=0.5

shortened R=0.66
shortened R=0.75
shortened R=0.83

LDPC, R=0.2
LDPC, R=0.33
LDPC, R=0.4
LDPC, R=0.5

LDPC, R=0.66
LDPC, R=0.75
LDPC, R=0.83

Fig. 7: Es/N0 required for achieving FER = 10−2

codes with optimized shortening patterns [9], as well as for the

LTE turbo code with 8 decoding iterations. It can be seen that

the proposed randomized chained polar subcodes significantly

outperform other code constructions.

Figure 7 illustrates the SNR required for achieving FER =
10−2 by the proposed randomized chained polar subcodes

of different rate and dimension. For comparison, we report

also the results for LDPC codes suggested for 5G [21] under

the belief propagation decoding with 15 iterations, as well as

shortened randomized polar subcodes [4]. It can be seen that

the proposed codes provide substantially better performance

compared to LDPC codes, and approximately the same per-

formance as shortened randomized polar subcodes. However,

an important advantage of the proposed construction is that

it does not require employing complicated two-dimensional

Gaussian approximation given by (9)–(10). Instead, the relia-

bility of bit subchannels, which is required for finding the set

of frozen symbol indices, is computed using (12) and (10),

i.e. using just simple quadratic expressions, while in [4] the

two-dimensional Gaussian approximation has to be used in

order to find the reliability of bit subchannels of a shortened

polarizing transformation.

VII. CONCLUSIONS

In this paper a novel method for construction of polar

subcodes of arbitrary length is proposed. The proposed code

construction makes use of a number of polarizing transfor-

mations of different size, which are combined to obtain the

required code length without shortening or puncturing. An

algorithm with complexity growing linearly with code length

is provided for finding the set of frozen symbol indices and

constraint matrix for the proposed codes.

Since no shortening or puncturing is used, evaluation of

the reliability of bit subchannels for the proposed codes can

be performed using one-dimensional Gaussian approximation.

A piecewise-quadratic approximation is proposed for the cor-

responding function, so that one can avoid evaluation of the

transcendent functions, and evaluate bit subchannel reliability

with essentially the same complexity as in the case of the

binary erasure channel.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. on Inf. Theory, vol. 55, no. 7, pp. 3051–3073, July 2009.

[2] I. Tal and A. Vardy, “List decoding of polar codes,” in Proceedings of
IEEE Int. Symp. on Inf. Theory, 2011, pp. 1–5.

[3] P. Trifonov and V. Miloslavskaya, “Polar subcodes,” IEEE Journal on
Sel. Areas in Comm., vol. 34, no. 2, pp. 254–266, February 2016.

[4] P. Trifonov and G. Trofimiuk, “A randomized construction of polar
subcodes,” in Proc. of IEEE Int. Symp. on Inf, Theory. 2017.

[5] K. Niu and K. Chen, “Stack decoding of polar codes,” Electronics
Letters, vol. 48, no. 12, pp. 695–697, June 2012.

[6] V. Miloslavskaya and P. Trifonov, “Sequential decoding of polar codes,”
IEEE Comm. Letters, vol. 18, no. 7, pp. 1127–1130, 2014.

[7] R. Wang and R. Liu, “A novel puncturing scheme for polar codes,” IEEE
Comm. Letters, vol. 18, no. 10, October 2014.

[8] H. Saber and I. Marsland, “An incremental redundancy hybrid ARQ
scheme via puncturing and extending of polar codes,” IEEE Transactions
on Communications, vol. 63, no. 11, November 2015.

[9] V. Miloslavskaya, “Shortened polar codes,” IEEE Transactions on In-
formation Theory, vol. 61, no. 9, pp. 4852–4865, 2015.

[10] K. Niu, K. Chen, and J. Lin, “Beyond turbo codes: Rate-compatible
punctured polar codes,” in Proc. of IEEE Int. Comm. Conf, 2013.

[11] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. on
Inf. Theory, vol. 59, no. 10, pp. 6562–6582, October 2013.

[12] P. Trifonov, “Chained polar subcodes,” in Proc. of 11th Int. ITG Conf.
on Systems, Comm. and Coding, 2017.

[13] R. Mori and T. Tanaka, “Performance of polar codes with the construc-
tion using density evolution,” IEEE Comm. Letters, vol. 13, no. 7, July
2009.

[14] N. Hussami, S. B. Korada, and R. Urbanke, “Performance of polar
codes for channel and source coding,” in Proc. of IEEE Int. Symp. on
Information Theory, 2009, pp. 1488–1492.

[15] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE Trans.
on Comm., vol. 60, no. 11, pp. 3221 – 3227, November 2012.

[16] J. Ha, J. Kim, and S. W. McLaughlin, “Rate-compatible puncturing of
low-density parity-check codes,” IEEE Trans. on Inf. Theory, vol. 50,
no. 11, November 2004.

[17] E. Blokh and V. Zyablov, “Coding of generalized concatenated codes,”
Problems of Information Transmission, vol. 10, no. 3, pp. 45–50, 1974.

[18] M. Grassl, “Computing extensions of linear codes,” in Proceedings of
IEEE International Symposium on Information Theory, 2007.

[19] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions
On Information Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.

[20] V. Bioglio, F. Gabry, and I. Land, “Low-complexity puncturing and
shortening of polar codes,” in Proc. of IEEE WCNC Workshops, 2017.

[21] Qualcomm, “R1-1709181: LDPC rate compatible design,” 3GPP, Tech.
Rep., 2017.

