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Abstract—Polar codes are demonstrated to be instances of both
generalized concatenated codes and multilevel codes. It is shown
that Gaussian approximation for density evolution enables one to
accurately predict the performance of polar codes. A construction
of generalized concatenated codes is proposed, which is based on
the equal error probability design rule originally developed in
the context of multilevel codes.

I. INTRODUCTION

Polar codes were recently shown to achieve the capacity of
discrete input memoryless symmetric channels [1]. Classes of
polar codes with high error exponents were proposed in [2],
[3]. However, their practical performance turns out to be not
record breaking.

This paper introduces a construction of generalized con-
catenated codes based on polar codes, which provides much
better performance compared to plain polar codes. The per-
formance of the considered construction strongly depends on
the choice of outer code rates. We propose to employ the
techniques developed in the area of multilevel codes to solve
the rate allocation problem. Furthermore, we show that the
performance of polar codes can be efficiently analyzed using
Gaussian approximation for density evolution. It appears also
that polar codes can be themselves represented as generalized
concatenated codes.

The paper is ogranized as follows. Section II introduces the
necessary background. Section III presents the proposed code
construction and rate allocation algorithm. Numeric results are
given in Section IV. Finally, some conclusions are drawn.

II. BACKGROUND

A. Generalized concatenated codes

Generalized concatenated codes ([4], [5], see [6] for detailed
treatment) are based on a family1 of (N,Ki, Di) outer codes
Ci over GF (2mi), 1 ≤ i ≤ l, and a family of nested
inner (n, kj , dj) codes Ci over GF (2), such that kj =∑l

i=j mi, 1 ≤ j ≤ l. The data are first encoded with outer
codes to obtain codewords (c11, . . . , c1N ), . . . , (cl1, . . . , clN ).
Then for each j = 1, . . . , N the symbols cij , 1 ≤ i ≤ l, are
expanded into mi-tuples using some fixed bases of GF (2mi),
and encoded with (n, k1, d1) inner code. This results in a

1For the sake of simplicity we consider only the case of linear binary codes.

(Nn,
∑l

i=1 Kimi,min(D1d1, . . . , Dldl)) linear binary code.
Generalized concatenated codes were shown to significantly
outperform classical concatenated codes.

B. Multilevel codes

Consider some signal constellation (single- or multi-
dimensional) A consisting of 2n symbols labeled with distinct
binary vectors (x1, . . . , xn) [7], [8]. Let

A(ui−1
1 ) =

{
a(xn

1 ) ∈ A|xi−1
1 = ui−1

1 , xn
i ∈ {0, 1}n−i+1

}
,

where ui
1 = (u1, . . . , ui), and a(x1, . . . , xn) is the

symbol corresponding to label (x1, . . . , xn). Let
(c11, . . . , c1N ), . . . , (cn1, . . . , cnN ) be some codewords
of binary codes C1, . . . , Cn. Then a codeword of
the corresponding multilevel code is given by
(a(c11, . . . , cn1), . . . , a(c1N , . . . , cnN )).

Having received a vector of noisy symbols (r1, . . . , rN ),
the multistage decoding algorithm proceeds by computing the
log-likelihood ratios

Li = ln

∑
a∈A(1) P {a|ri}∑
a∈A(0) P {a|ri}

, 1 ≤ i ≤ N, (1)

and supplying it to the decoder of C1, which produces an
estimate (ĉ11, . . . , ĉ1N ) for the corresponding codeword. The
codeword of C2 can be recovered in the same way, but the
original signal constellation A should be replaced in (1) with
its subsets A(ĉ1i) identified by the first decoder. If the esti-
mates ĉ1i are correct, this essentially improves the reliability
of the input to the decoders of C2. This algorithm proceeds
recursively for all levels of the code. That is, at the j-th stage
the decoder observes the output of a virtual channel given by
not only (r1, . . . , rN ), but also (ci1, . . . , ciN ), 1 ≤ i < j.

Multilevel codes can be considered as an instance of gen-
eralized concatenated codes [6] .

C. Polar codes

Consider a binary input symmetric memoryless channel
with output probability density function W (y|x). It can be
transformed into a vector channel given by Wn(y

n
1 |un

1 ) =
Wn(yn1 |un

1Gn), where Wn(yn1 |xn
1 ) =

∏n
i=1 W (yi|xi), Gn =

BnF
⊗s, n = 2s, F =

(
1 0
1 1

)
, ⊗s denotes s-times



Kronecker product of a matrix with itself, and Bn is a
bit reversal permutation matrix. This channel is obtained by
transmitting the elements of xn

1 = un
1Gn over n copies of the

original channel W (yi|xi). The vector channel can be further
decomposed into equivalent subchannels

W (i)
n (yn1 , u

i−1
1 |ui) =

1

2n−1

∑
un
i+1

Wn(y
n
1 |un

1 ). (2)

Here (yn1 , u
i−1
1 ) corresponds to the output of the i-th sub-

channel, and ui to its input. The values of ui−1
1 are assumed

to be available at the receiver side. For example, they can
be obtained as (presumably correct) decisions made by the
decoder for other channels. It was shown in [1] that the sum
capacity of the transformed channel is equal to the capacity
of the original vector channel Wn, and for n → ∞ the
capacities of W

(i)
n converge either to 0 or to 1. Symbols ui

to be transmitted over low-capacity subchannels can be frozen
(i.e. set to 0 at the transmitter side). This results in a linear
block code.

Given yn1 and estimates ûi−1
1 of ui−1

1 , the successive cancel-
lation decoding algorithm attempts to estimate ui. This can be
implemented by computing the following log-likelihood ratios
L
(i)
n (yn1 , û

i−1
1 ) = log

W (i)
n (yn

1 ,ûi−1
1 |ui=0)

W
(i)
n (yn

1 ,ûi−1
1 |ui=1)

[1], [9]:

L(2i−1)
n (yn1 , û

2i−2
1 )

= 2 tanh−1( tanh(L
(i)
n/2(y

n/2
1 , û2i−2

1,e ⊕ û2i−2
1,o )/2)

× tanh(L
(i)
n/2(y

n
n/2+1, û

2i−2
1,e )/2)), (3)

L(2i)
n (yn1 , û

2i−1
1 ) = L

(i)
n/2(y

n
n/2+1, û

2i−2
1,e )

+(−1)û2i−1L
(i)
n/2(y

n/2
1 , û2i−2

1,e ⊕ û2i−2
1,o ),(4)

where ûi
1,e and ûi

1,o are subvectors of ûi
1 with even and odd

indices, respectively, and L
(i)
1 (yi) = log W (yi|0)

W (yi|1) .
It is sufficient to perform the error probability analysis

only for the case of all-zero codeword. Density evolution
can be used to compute the probability density functions
pi(x) of L

(i)
n (yn1 , û

i−1
1 ) from the PDF of L

(i)
1 (yi). Then the

error probability for the i-th subchannel can be obtained as
πi =

∫ 0

−∞ pi(x)dx. To obtain (n, k) polar code one should set
at the transmitter ui = 0 for n−k subchannels with the highest
πi. However, implementing density evolution both accurately
and efficiently turns out to be a challenging task.

III. CONCATENATED CODING SCHEME

A. Multilevel codes based on the polarization transformation

It can be seen that the concepts of equivalent subchannels
and the successive cancellation decoding algorithm are very
similar to the construction of multilevel codes and the multi-
stage decoding algorithm. In the context of polar codes, signal
constellation A is given by 2n binary n-vectors a(u), which
can be obtained as a(u) = uGn, u ∈ GF (2)n. The crucial
assumption underlying the successive cancellation decoding
algorithm is that the decisions ûi−1

1 at the previous steps
are correct. It is known that the capacities of the equivalent

subchannels induced by the polarizing transformation converge
to 0 and 1 quite slowly, i.e. the probability of error for i < n
may be quite high, resulting thus in error propagation. It is
natural to encode the data to be transmitted over different sub-
channels with appropriate outer codes Ci of length N to reduce
the probability of this event, similarly to the construction of
multilevel codes.

That is, one can construct N vectors u(j) =
(u1,j , . . . , un,j), 1 ≤ j ≤ N , where (ui,1, . . . , ui,N ) ∈ Ci, and
construct a multilevel codeword (u(1)Gn, . . . , u

(N)Gn). Then
decoding can be performed by computing the log-likelihood
ratios according to (3)–(4), and passing them to a decoder of
Ci, which produces a codeword estimate (ûi,1, . . . , ûi,N ) ∈ Ci.
It can be utilized in the subsequent steps of the successive
cancellation decoding algorithm.

The similarity of the above described algorithm with mul-
tistage decoding suggests employing multilevel code design
rules for selection of parameters of the proposed coding
scheme. The following rules are of most interest [8]:

1) Capacity rule. The rate Ri of Ci should be chosen equal
to the capacity Ci of the i-th subchannel. According to
[8] and (3)–(4), one obtains

Ci = I(yn1 ;ui|ui−1
1 ) = Eui−1

1
[C(A(ui−1

1 ))]

−Eui
1
[C(A(ui

1))], (5)

where

C(B) =

∫
Rn

∑
a∈B

Wn(yn1 |a)
|B|

log2

 |B|Wn(yn1 |a)∑
b∈B

Wn(yn1 |b)

 dyn1

is the capacity when using the subset B of {0, 1}n for
transmission over the vector channel Wn(yn1 |xn

1 ).
Obviously, employing this rule results in a capacity-
achieving concatenated code, provided that the outer
codes can achieve the capacity too. However, evaluating
(5) seems to be a difficult task. Furthermore, besides
the polar codes themselves there are still no capacity
achieving code constructions (except for the case of
binary erasure channel).

2) Coding exponent rule. The rate Ri of Ci should be
selected as a solution of the equation

Ei(Ri) = − 1

N
log2 pe,

where pe is the target error probability, and Ei(Ri) =
max0≤ρ≤1 (Ei(ρ)− ρRi). This rule ensures that the
decoding error probabilities of Ci are approximately
the same, provided that random codes are used. How-
ever, employing it requires evaluation of Ei(ρ) =
Eui−1

1

[
− log2 Ei(ρ, u

i−1
1 )

]
, where

Ei(ρ, u
i−1
1 ) =

∫
yn
1

(
1∑

ui=0

1

2
f

1
1+ρ (yn1 |ui

1)

)1+ρ

dyn1 ,

(6)
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Fig. 1. (8, 5, 2) polar code as a generalized concatenated code

and

f(yn1 |ui
1) =

∑
un
i+1

Wn(yn1 |un
1G)

2n−i
.

Evaluating (6) requires one essentially to enumerate all
possible vectors un

1 , and is therefore also impractical.
3) Equal error probability rule. More reasonable approach

can be based on considering a specific family of outer
codes, and selecting their parameters so that the de-
coding error probability is approximately the same for
all subchannels. Some subchannels may be assigned
zero-rate codes under this scheme. These subchannels
correspond to frozen bits.

4) Balanced minimum distances rule. The classical ap-
proach to the design of generalized concatenated codes
is to select Didi ≈ const. However, as it was shown in
[8], this forces one to select for some channels codes
with rate exceeding their capacities, while the error
correction capability of other codes may be excessive for
their channels. This results in too high error coefficient
of the obtained code.

The described construction can be considered as an instance
of generalized concatenated codes. Indeed, the i-th inner code
is given by Ci = Ci+1 ∪ (eiGn + Ci+1), where ei is the
i-th unit vector, and Cn+1 = {(0, . . . , 0)}. The outer codes
are given by Ci ⊂ GF (2)N . Since the construction of polar
codes is based on recursive application of the polarizing
transformation, they can be also considered as an instance
of generalized concatenated codes. The ability of polar codes
to achieve the capacity implies the existence of capacity
achieving generealized concatenated codes. Furthermore, it
turns out that the decoding algorithm derived in [10] for the
case of Reed-Muller codes (which can be considered as an
instance of GCC designed according to the balanced distances
rule) can be obtained from (3)–(4) by employing the min-sum
approximation.

Example 1. Consider a (8, 5, 2) polar code with generator
matrix [11]

G =


1 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 .

It can be obtained as a 3-level generalized concatenation of
(2, 1, 2) and (2, 2, 1) codes, as shown in Figure 1. The last
level of concatenation is based on partitioning of the set of
2-vectors into subsets A0 = {00, 11} and A1 = {10, 01}.
The codeword symbols of (4, 2, 2) code are used to select
a particular subset, while the ones of (4, 3, 2) code select
particular tuples to be transmitted.

It was shown in [2] that channel polarization can be also
performed by high-dimensional kernels F based on nested
BCH codes. This construction can be also treated in the
framework of generalized concatenated codes.

Concatenated coding schemes similar to the one described
above were proposed in [12], [13]. However, these papers do
not address the problem of outer code rate optimization in a
systematic way.

B. Evaluating the quality of equivalent subchannels

Implementing the equal error probability rule requires one
to be able to calculate the quality of equivalent subchannels.
This can be performed by constructing the PDF of L

(i)
1 (yi)

and applying to it density evolution. The most practically
important case corresponds to the AWGN channel. In this
scenario L

(i)
1 (yi) ∼ N ( 2

σ2 ,
4
σ2 ). It was suggested in [14] to

approximate the PDFs of the values given by (3)–(4) with
suitable Gaussian distributions. This enables one to compute
only the expected value of L

(i)
n , drastically reducing thus the

complexity. In the case of polar codes this approach reduces
to

E[L(2i−1)
n ] = ϕ−1

(
1−

(
1− ϕ

(
E[L

(i)
n/2]

))2)
(7)

E[L(2i)
n ] = 2E[L

(i)
n/2], (8)

where ϕ(x) ≈ e−0.4527x0.86+0.0218. Channel symmetry implies
that D[L

(i)
m ] = 2E[L

(i)
m ]. The error probability for each

subchannel can be obtained as

πi ≈ Q

(√
E[L

(i)
n ]/2

)
. (9)

Evaluating these expressions in many cases leads to more
accurate results compared to the standard density evolution,
since the latter approach may suffer from quantization errors.

C. Rate allocation algorithm

It is well known that the probability of incorrect decoding
of a binary linear block code C can be obtained as

pe ≤
∑

c∈C\{0}

P {w(c) < 0} ,



where
w(c) =

∑
i:ci ̸=0

Li, (10)

and Li = ln P{ci=0|yi}
P{ci=1|yi} . While the log-likelihood ratios

obtained from (3) are not Gaussian, for sufficiently good codes
the number of summands in (10) is large, and this quantity can
be also approximated as a Gaussian random variable by the
central limit theorem. Hence, one obtains

pe ≤
N∑
j=1

AjQ

(√
E[Li]

2
j

)
≈ AdQ

(√
E[Li]

2
d

)
, (11)

where Ai are weight spectrum coefficients of code C, and d is
its minimum distance. While it is in general difficult to obtain
code weight spectrum, one can use simulations to obtain a
performance curve for the case of AWGN channel and some
fixed (probably, non-ML) decoding algorithm, and use least
squares fitting to find suitable Ad and d.

Let Kl and Pl(m) be the dimension and decoding error
probability function for the l-th code in the considered family
of possible outer codes, respectively, where m is the expected
value of LLR, and K0 = P0(m) = 0. Let us further assume
that Pi(m) < Pj(m) ⇔ Ki < Kj . The following simple
algorithm can be used to construct a generalized concatenated
code with rate R according to the equal error probability rule.
The algorithm employs the bisection method to approximately
solve the equation

∑n
i=1 K(i, P ) = NnR, where K(i, P ) is

the maximum dimension of a code capable of achieving error
probability P at the i-th subchannel. The parameter ϵ is a
sufficiently small constant, which affects the precision of the
obtained estimate for P . It is assumed that the code will be
used for transmitting data over AWGN channel with noise
variance σ2. The algorithm returns the dimensions of optimal
codes for each level, as well as an estimate for the decoding
error probability for each code:

1) Let E[L
(1)
1 ] = 2/σ2. Compute mi = E[L

(i)
n ], 1 ≤ i ≤ n

using (7)–(8).
2) Let P ′ = 1, P ′′ = 0.
3) If P ′ − P ′′ < ϵP ′ go to step 7:
4) Let P̃ = (P ′ + P ′′)/2.
5) For each i find li = argmaxl:Pl(mi)≤P̃ Kl. Let K =∑n

i=1 Kli .
6) If K < RNn, then P ′′ = P̃ , else P ′ = P̃ . Go to step

3.
7) Return (Kl1 , . . . ,Kln), P̃ .

The successive cancellation/multistage decoder produces an
error if decoding of any of the component codes is incorrect.
Therefore, the overall error probability can be computed as

P = 1− P {C1, . . . , Cn}
= 1− P {C1}P {C2|C1} · · ·P {Cn|C1, . . . , Cn−1}

≈ 1−
n∏

i=1

(1− Pli(mi)) ≈ 1− (1− P̃ )n, (12)

where Ci denotes the event of correct decoding of the outer
code at the i-th level, P̃ is the quantity computed by the above
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Fig. 2. Accuracy of Gaussian approximation

TABLE I
DESIGN OF (1016, 508) CODE, Eb/N0 = 3 DB

i 1 5 3 7 2 6 4 8
π̂i 0.48 0.25 0.3 0.044 0.33 0.065 0.097 0.0024
πi 0.44 0.24 0.29 0.044 0.32 0.065 0.1 0.0023
Ki 0 42 29 105 22 99 91 120

algorithm, and li is the index of the code selected for the i-th
subchannel.

IV. NUMERIC RESULTS

Figure 2 presents simulation results illustrating the accuracy
of bit error rate analysis based on the Gaussian approxima-
tion. Simulations were performed for the case of 210 × 210

polarizing transformation and AWGN channel with noise
variance N0/2 = 1. Error-free values ûi−1

1 = ui−1
1 were

used in the successive cancallation decoding algorithm while
estimating ui to eliminate error propagation. Transmission
of 106 data blocks was simulated. Each point on the figure
corresponds to a particular subchannel and presents actual
vs. estimated bit error rate. It can be seen that except for a
few very bad channels Gaussian approximation provides very
accurate results, although it slightly overestimates the error
probability. The discrepancy in the low-BER range is caused
mostly by the simulation inaccuracy. Observe that there are
many subchannels with medium bit error rate, which require
additional layer of coding to achieve reliable data transmission.

Next we present performance results for the case of GCC
based on outer BCH codes decoded with box-and-match
algorithm [15] with reprocessing order 4 and inner polar codes.

Table I illustrates the design of a rate 0.5 concatenated code
based on BCH codes of length 127 and polar codes of length
8. Here π̂i denotes the empiric bit error probability for the i-
th equivalent subchannel, provided that all previous decisions
of the successive cancellation decoder are correct. One can
see that these values are very close to the theoretical error
probability πi given by (9). Observe also that most of the sub-
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channels have quite high error probability. In a real successive
cancellation decoder this results in severe error propagation,
which causes the existing short polar codes to perform much
worse compared to other ones. The error propagation problem
can be mitigated by employing appropriate outer codes. The
dimensions Ki of outer codes shown in the table were obtained
with the optimization algorithm presented in Section III-C.

Figure 3 presents simulation results for codes of length
nN obtained from various polar and BCH codes of length
n and N , respectively, as well as their theoretical decoding
error probability. It can be seen that the code described in
Table I provides the same performance as a similar irregular
LDPC code in the high-SNR region, and outperforms it for
low SNR. This behaviour is due to near-ML decoding of
outer component codes. Figure 3 shows also that increasing
the length of outer codes results in better performance of con-
catenated codes. This is due to higher flexibility in selection of
code parameters provided by longer codes. It appears also that
running the rate assignment algorithm for different values of
σ2 results in different codes. Those obtained for smaller values
of σ2 (compare the codes for SNR = 3 dB and SNR = 2 dB)
have usually higher minimum distance and perform better at
high SNR. It can be also seen that the actual code performance
is quite close to the one predicted by (12). The performance of
the obtained concatenated codes is much better than the one
of plain polar code decoded with belief propagation algorithm
[16].

V. CONCLUSIONS

In this paper it was shown that the channel polarization
transformation can be treated in the framework of multilevel
coding and multistage decoding. This enable one to utilize the
corresponding code design rules to obtain good generalized
concatenated codes. By properly selecting the rates of the
component codes one can avoid error propagation, which can
substantially degrade the performance of short plain polar
codes. It was also shown that the quality of the equivalent

subchannels induced by the polarizing transformation can be
efficiently studied using Gaussian approximation for density
evolution. The codes obtained with this approach substantially
outperform plain polar codes, and approach the performance of
similar irregular LDPC codes. However, this comes in general
at the expence of higher decoding complexity of component
codes. The proposed approach enables one also to accurately
predict the performance of the constructed codes, and avoid
costly simulations, which may be infeasible at high SNR.
However, this requires one to be able to precisely estimate
the performance of component codes.

The performance can be further improved by more careful
selection of outer codes, as well as by employing an iterative
decoding algorithm for the concatenated code.
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