
Sequential Decoding of Polar Codes with Arbitrary

Binary Kernel

Vera Miloslavskaya, Peter Trifonov

Saint-Petersburg State Polytechnic University

Email: {veram,petert}@dcn.icc.spbstu.ru

Abstract—The problem of efficient soft-decision decoding of
polar codes with any binary kernel is considered. The proposed
approach represents a generalization of the sequential decoding
algorithm introduced recently for the case of polar codes with
Arikan kernel. Numeric results show that the proposed algorithm
enables near-ML decoding of polar codes with BCH kernel.

I. INTRODUCTION

Polar codes were shown to be able to achieve the capacity

of a wide class of communication channels [1]. Namely, it was

shown that m-fold application of a 2×2 linear transformation

given by matrix A =

(
1 0
1 1

)
(Arikan kernel) transforms the

original memoryless binary input output-symmetric channel

into a number of bit channels, and their capacities converge

with m to 0 and 1. However, the rate of convergence (rate of

polarization) appears to be quite low. It was shown in [2] that

high-dimensional kernels (e.g. based on BCH codes) provide

higher polarization rate than the Arikan kernel. That is, the

decoding error probability of such polar codes decreases much

faster with code length compared to similar Arikan codes.

However, there are still no efficient methods for their decoding.

The successive cancellation (SC) algorithm is the classical

decoding method for polar codes. However, it is not able to

recover from errors which may occur at early phases of the

decoding, and fails therefore to achieve the ML performance.

This problem was addressed in [3], where a list decoding algo-

rithm for Arikan polar codes was introduced. It was shown in

[4], [5] that the same performance can be achieved with much

smaller complexity by employing stack decoding algorithm.

It was shown in [6] that further complexity reduction can be

obtained at the expense of negligible performance degradation.

In this paper we present a generalization of the sequential

decoding algorithm suggested in [6] to the case of polar

codes with an arbitrary binary kernel. The paper is organized

as follows. Background on polar codes and their sequential

decoding is provided in Section II. The proposed decoding

method is described in Section III. Some improvements for

it are derived in Section IV, and implementation issues are

discussed in Section V. Numeric results are provided in

Section VI.

II. BACKGROUND

A. Polar codes

An (n = lm, k) polar code based on l × l kernel B is

a linear block code generated by k rows of matrix Gn =

M (n)B⊗m, where B⊗m denotes m-times Kronecker product

of matrix with itself and M (n) is permutation matrix, such that

M
(n)
t,t′ = 1 for any t =

∑m−1
i=0 til

i and t′ =
∑m−1

i=0 tm−1−il
i,

ti ∈ {0, . . . , l − 1}.

Let cn−1
0 = (c0, . . . , cn−1). Any codeword of a polar code

can be represented as cn−1
0 = un−1

0 Gn, where un−1
0 is the

input sequence consisting of k information symbols and n−k
frozen symbols, which are equal to zero. Let F be the set of

n− k indices of frozen symbols.

B. Successive cancellation decoding

The decoding problem for polar codes consists in finding

ûn−1
0 = arg max

un−1
0 :un−1

0,F =0

P (un−1
0 |yn−1

0),

where un−1
0,F denotes subvector of un−1

0 consisting of elements

with index j ∈ F . At the i-th phase the SC decoder computes

estimates

ûi =

{
argmaxui

P (ûi−1
0 , ui|y

n−1
0), t 6∈ F

0, otherwise.
(1)

Given some path ui0, its probability can be recursively com-

puted as

P (uls+t
0 |yn−1

0) =
∑

u
l(s+1)−1
ls+t+1

l−1∏

j=0

πj , (2)

where 0 ≤ t < l, πj = P
(
θB

[
u
(s+1)l−1
0 , j

]
|y

(j+1) n
l
−1

j n
l

)

θB

[
u
l(s+1)−1
0 , j

]
r

=
(
u
l(r+1)−1
lr Gn

)
j
, 0 ≤ r ≤ s,

P (ur|yr) = P (yr|ur)P (ur)
P (yr)

, and P (yr|ur) is the channel

transition probability function.

The SC algorithm for binary polar codes can be imple-

mented with complexity O(n logl(n)) unit calculations, where

a unit calculation corresponds to single evaluation of (2).

C. Sequential decoding of polar codes with Arikan kernel

A major drawback of the SC algorithm is that it cannot

correct errors which may occur at early phases of the decoding

process. This problem is solved in stack/list algorithms by

keeping a list of the most probable paths within code tree [3],

[4], [5]. A path of length i is identified by values ui−1
0 ∈

{0, 1}
i
. Each path is associated with its score, which depends

on its probability. Stack algorithms [4], [5] keep the paths in

a stack (priority queue). At each iteration the decoder selects

for extension path ui−1
0 with the largest score, and performs

the i-th phase of SC decoding. That is, if i ∈ F the path

is extended to obtain ui0, where ui = 0, and the extended

path is stored in the stack together with its score. Otherwise,

the path is cloned to obtain new paths (u0, . . . , ui−1, 0) and

(u0, . . . , ui−1, 1), which are stored in the stack together with

their scores. In order to keep the size of the stack limited,

paths with low scores can be purged from the stack, so that

the total number of paths considered simultaneously by the

decoder does not exceed some parameter Θ. Furthermore, if

the decoder returns to phase i more than L times, all paths

shorter than i+1 are eliminated. Decoding terminates as soon

as path of length n appears at the top of the stack, or the

stack becomes empty. Hence, the worst case complexity of

stack decoding is given by O(Ln logl(n)) unit calculations.

Average decoding complexity depends on how path scores are

defined.

In [6] a low-complexity version of the stack algorithm for

binary polar codes with 2 × 2 Arikan kernel was introduced.

Let v[j]n−1
0 , 0 ≤ j < 2n−i−1, be different paths such

that v[j]i0 = ui0 and v[j]n−1
i+1 ∈ {0, 1}

n−i−1
. Let J be a

random variable, which is equal to j ∈
{
0, . . . , 2n−i−1 − 1

}

if the most probable codeword of the polar code corre-

sponds to path v[j]n−1
0 . The solution of the optimization

problem Z = max
un−1
0 :un−1

0,F =0

PUn−1
0 |Y n−1

0
(un−1

0 |yn−1
0) is equal

to PUn−1
0 |Y n−1

0
(v[j]n−1

0 |yn−1
0) with probability P {J = j}, i.e.

it is a function of random variable J . Here Uh is a random

variable corresponding to the h-th input symbol of polarizing

transformation and Yh is a random variable corresponding

to the h-th received symbol. Observe that J = j implies

that v[j]h = 0, h ∈ F . Hence, one can estimate Z as

EJ [PUn−1
0 |Y n−1

0
(v[J]n−1

0 |yn−1
0)]. It can be seen that increasing

i reduces the number of possible values of random variable

J , improving thus the accuracy of such estimate.

Let us assume without loss of generality that v[0]n−1
0 is the

most probable path, i.e.

arg max
0≤j<2n−i−1

PUn−1
0 |Y n−1

0
(v[j]n−1

0 |yn−1
0) = 0.

Event J = 0 is equivalent to v[0]h = 0, h ∈ F . Therefore,

one obtains

EJ [PUn−1
0 |Y n−1

0
(v[J]n−1

0 |yn−1
0)] =

2n−i−1−1∑

j=0

PUn−1
0 |Y n−1

0
(v[j]n−1

0 |yn−1
0)P {J = j} ≥

PUn−1
0 |Y n−1

0
(v[0]n−1

0 |yn−1
0)

︸ ︷︷ ︸
R(ui

0,y
n−1
0)

P {J = 0} .

(3)

It is possible to show that

R(ui0, y
n−1
0) = max

un−1
i+1

PUn−1
0 |Y n−1

0
(un−1

0 |yn−1
0)

can be computed exactly as [6]

R(u2s+t
0 , yn−1

0) =

max
u
2(s+1)−1
2s+t+1

1∏

j=0

R
(
θA

[
u
2(s+1)−1
0 , j

]
, y

(j+1)n
2 −1

j n
2

)
,

(4)

where t ∈ {0, 1} , and initial values for these recursive

expressions are given by R(b, yj) = P (b|yj), b ∈ {0, 1}.

It is difficult to compute the second term in (3) exactly for

any given yn−1
0 at phase i of the SC decoder. However, it

can be averaged over all possible received sequences. Average

probability of the most probable path un−1
0 having prefix

ui0, having zeroes in positions j ∈ F , is lower bounded by

probability of the SC decoder, which starts from ui0 and does

not take into account any freezing constraints, makes decisions

uj = 0, j > i, j ∈ F , i.e. does not make errors in these

positions. Probability of this event is given by

Ω̂(i) =
∏

j∈F ,j>i

(1− Pj), (5)

where Pj is the j-th subchannel error probability, provided that

exact values of all previous bits uj′ , j
′ < j, are available. It

depends only on n, F (i.e. the code being considered), channel

properties and phase i. For any given channel, probabilities Pj

can be pre-computed using density evolution.

Thus, the score for path ui0 can be defined as

T̂ (ui0, y
n−1
0) = R(ui0, y

n−1
0)Ω̂(i). (6)

This approach enables one to compare paths ui0 with different

lengths, and prevent the decoder from switching frequently

between different paths.

III. PROPOSED APPROACH

A. Decoding algorithm

We propose to generalize decoding algorithm [6] to the case

of polar codes based on arbitrary binary kernel. The idea of

this algorithm does not use any kernel properties. Similarly to

the case of Arikan kernel, in the case of l × l kernel B one

obtains

R(uls+t
0 , yn−1

0) =

max
u
l(s+1)−1
ls+t+1

l−1∏

j=0

R
(
θB

[
u
l(s+1)−1
0 , j

]
, y

(j+1)n
l
−1

j n
l

)
,

(7)

where 0 ≤ t < l.

This enables one to perform decoding of a polar code with

arbitrary binary kernel in exactly the same way as in the case

of Arikan kernel, i.e. keep paths ui0 in a stack, and select at

each iteration for extension a path with the highest value of

T̂ (ui0, y
n−1
0), until a path of length n is obtained.

However, the task of computing (7) is not as simple as in

(4). Moreover, efficient techniques for computing Ω̂(i) should

be provided.

B. Computing path score

1) FunctionR(ui0, y
n−1
0): Let i = ls+t, 0 ≤ t < l. Finding

u
l(s+1)−1
ls+t+1 maximizing (7) is equivalent to decoding in a coset

of (l, κ = l−t−1) code Ct, which is generated by last κ rows

of matrix B. The coset is given by uls+t
ls B0..t+Ct, where B0..t

is the submatrix of B consisting of first t + 1 rows. Indeed,

task (7) can be considered as finding

p[uls+t]t = max
u
l(s+1)−1
ls+t+1

P (u
l(s+1)−1
ls |zl−1

0), (8)

where transition probabilities P (b|zj) =

∆jR
((
θB

[
uls−1
0 , j

]
, b
)
, y

(j+1)n
l
−1

j n
l

)
, b ∈ {0, 1}, 0 ≤ j < l,

and ∆j are some scaling factors. This enables one to employ

any soft decision decoding algorithm for finding u
l(s+1)−1
ls+t+1

maximizing (8).

Hence, the total complexity of the sequential decoding algo-

rithm is O(Ln logl(n)) unit operations, where unit operations

correspond to searching for the most probable codeword in

codes generated by rows of l× l kernel B.

2) Function Ω̂(i): Finding error probability Pj , j ∈ F , for

a bit subchannel induced by non-Arikan polarizing transfor-

mation, provided that exact values of uj−1
0 are available to the

decoder, still remains an open problem. Therefore, we have to

use simulations to compute these values. Possible alternatives

include employing union bound together with multilevel code

weight enumerator computation techniques introduced in [7],

and Gaussian approximation method based on Gram-Charlier

series expansion of the expression for symbol LLR [8]. The

first approach appears to work poorly on bad bit subchannels,

which are included into the set of frozen symbols. The second

approach may result in divergent series.

IV. IMPROVED DECODING METHOD

It can be seen that estimation of input symbols ui,
sl ≤ i < (s + 1)l, is performed using prob-

abilities R
((
θB

[
uls−1
0 , j

]
, b
)
, y

(j+1) n
l
−1

j n
l

)
, b ∈ {0, 1} ,

and the corresponding subset of frozen symbols is

F ∩{sl, . . . , sl + l − 1} . The former probabilities are inde-

pendent from t = i mod l. Therefore, symbols u
(s+1)l−1
sl can

be estimated jointly. This enables one to significantly reduce

the decoding complexity.

Assume that at some iteration β of the decoding algorithm

described in Section III-A path usl−1
0 is selected for extension

as the most probable one. Let us define the set of paths of

length (s+ 1)l which can be obtained from path usl−1
0

V =
{
u
(s+1)l−1
0 |u

(s+1)l−1
sl ∈ {0, 1}

l
, u

(s+1)l−1
sl,F = 0

}
.

Recall, that the sequential decoding algorithm involves stack

purging operation, which eliminates paths with lowest scores,

so that the total number of paths does not exceed Θ, and list

pruning operation, which ensures that at most L paths can be

extended till phase i for any i. Let us assume for the sake of

simplicity that all paths given by V are inserted into the stack,

and then stack purging and list pruning operations are applied.

Let Φ ⊂ V be the set of paths which survive these operations.

It can be seen from (5)–(6) that scores T̂ (u
(s+1)l−1
0 , yn−1

0)
have common factor Ω̂((s + 1)l − 1), i.e. Φ consists

of φ = |Φ| paths u
(s+1)l−1
0 with largest probabilities

R(u
(s+1)l−1
0 , yn−1

0). This implies that these paths correspond

to φ most probable codewords u
(s+1)l−1
sl B of (l, λs) code

Υs generated by rows of B with indices from Ξs, where

Ξs = {sl, sl+ 1, . . . , (s+ 1)l− 1}\F is the set of non-frozen

symbols in the s-th block of input symbols, and λs = |Ξs|.
These codewords can be identified using any list soft decision

decoding algorithm for binary linear code Υs.

Let t̂j be the j-th largest path score stored in the stack at

iteration β, 0 ≤ j < Θ. If there are Θ̃ < Θ active paths

in the stack, assume that t̂j = 0, Θ̃ ≤ j < Θ. Let Qi be

the set of paths of length i stored in the stack. Let t̃j be the

scores of paths in Q(s+1)l arranged in the descending order.

Let t̃j = 0, L̃ ≤ j < L, where L̃ = |Q(s+1)l|. Φ includes all

paths from V which can survive stack purging and list pruning

operations, i.e.

u
(s+1)l−1
0 ∈ V : T̂ (u

(s+1)l−1
0 , yn−1

0) ≥ max(t̂Θ−φ, t̃L−φ).
(9)

Observe that if L − L̃ ≥ 2λ and Θ − Θ̃ ≥ 2λs , then

exhaustive search over codewords wl−1
0 ∈ Υs is performed

and for each wl−1
0 corresponding path is pushed into the stack

together with its score. It appears that set Φ given by (9) is

highly redundant. More efficient algorithm can be obtained by

replacing Φ with

Φ̂ =
{
u
(s+1)l−1
0 ∈ Φ|T̂ (u

(s+1)l−1
0 , yn−1

0) ≥ e−αρ
}
, (10)

where ρ = T̂
(
(usl0 , w

l−1
0), yn−1

0

)
, and wl−1

0 B is the most

probable codeword of Υs. Here α is a parameter which affects

the size of the obtained list. It must be recognized that for

sufficiently high α this approach may require decoding of

Υs beyond its Johnson bound [9]. This may result in list

size, which is exponential in l. In order to obtain a practical

algorithm, it may be necessary to further restrict Φ̂ to contain

L0 vectors with the largest score for some L0.

The improved decoding algorithm operates as follows. At

each iteration it selects for extension path usl−1
0 with the

largest score. Then list decoding of code Υs is performed,

and paths given by (10) are pushed into the stack together

with their scores. The input data for the list decoder are

still given by R
((
θB

[
uls−1
0 , j

]
, b
)
, y

(j+1) n
l
−1

j n
l

)
, b ∈ {0, 1}.

These values are given by (7), and are computed recursively

by employing a soft-input hard-output decoder for codes

generated by rows of B. Path score is defined as

T̂ (u
(s+1)l−1
0 , yn−1

0) = R(u
(s+1)l−1
0 , yn−1

0)Ω̃(s+ 1),

where

Ω̂(s) =

n/l−1∏

σ=s+1

(1− Γσ),

and Γσ is the probability of non-zero values appearing in

positions j ∈ {σl, . . . , (σ + 1)l − 1} ∩ F of the most prob-

able path with prefix uσl−1
0 . Stack purging and list pruning

operations are performed in the same way as described above.

Probabilities Γσ can be obtained from simulations. Decoding

terminates as soon as path of length n appears at the top of

the stack.

V. IMPLEMENTATION

Both encoding and decoding operations for a polar code of

length n = lm can be decomposed into m layers, where each

layer corresponds to application of the linear transformation

given by B to lm−1 data units obtained at the previous layer.

In the case of decoding, layer m− 1 (final layer) corresponds

to recovery of input symbols ui, where list decoding is

needed, as described in Section IV. At layers 0, . . . ,m − 2
(intermediate layers) one needs to identify just single most

probable codeword given by (8) for each data unit.

A. Intermediate layers

Any soft decision decoding algorithm for coset uls+t
ls B0..t+

Ct can be used to find a solution of (8). Let us consider for

the case of concreteness the case of Box and Match algorithm

[10]. For a code of dimension κ, (κ + ψ, γ) Box and Match

algorithm performs search for up to 2γ errors in positions from

set Λ(t) ∪ Ψ(t), where Λ(t) is the most reliable information

set and Ψ(t) is the set of ψ most reliable positions except

positions in Λ(t). Parameter ψ specifies a trade-off between

time and space complexity.

Let ω[b]j = P (b+uls+t
ls B0..t,j |zj) be the input probabilities.

The input LLR vector χl−1
0 is defined as

χj = (−1)u
ls+t

ls
B0..t,j log

ω[1]j
ω[0]j

,

where B0..t,j is the vector consisting of first t + 1 elements

of the j-th column of matrix B. In order to identify the

most probable codeword vl−1
t+1Bt+1..l−1 ∈ Ct one needs

to construct sets Λ(t) and Ψ(t). The first step of the Box

and Match algorithm consists in sorting of the reliability

vector (|χ0|, . . . , |χl−1|). It can be seen that the permutation

obtained as a result of this step does not depend on t, i.e.

it can be performed only once for any given s. Observe

that Λ(0) ⊃ Λ(1) ⊃ · · · ⊃ Λ(l−2). In order to reduce the

complexity, we propose to construct information sets Λ(t)

jointly. Assuming that Cl−2 is a repetition code, one obtains

that Λ(l−2) = {jl−2} : jl−2 = argmaxj |χj |. Given Λ(t), one

can construct Λ(t−1) = Λ(t)∪{jt−1} , where jt−1 is such that

Bt..l−1,jt−1 is linearly independent of Bt..l−1,i, i ∈ Λ(t), and

|χjt−1 | is as high as possible. Ψ(t) can be obtained similarly.

Given the output vl−1
t+1Bt+1..l−1of the decoding algorithm,

one should compute p[vt]t =
∏l−1

j=0 ω[(v
l−1
0 B)j]j . Even if

vl−1
t+1Bt+1..l−1 fails to be the ML solution of the decoding

problem due to suboptimality of the decoder being used, this

does not necessarily result in a failure of the proposed polar

code decoding algorithm, since p[vt]t is typically close to its

true value.

Recall that for any t one needs to compute both p[0]t and

p[1]t. This requires finding most probable codewords c[0]l−1
0

and c[1]l−1
0 in cosets (vt−1

0 , 0)B0..t +Ct and (vt−1
0 , 1)B0..t +

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.5 1 1.5 2 2.5 3

F
E

R

Eb/N0, dB

L=1
Θ=64, L=2

Θ=512, L=8
Θ=1024, L=16

ML lower bound
Polar Arikan with CRC, L=32

Figure 1. Performance of (1024, 512) polar codes

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

F
E

R

Eb/N0, dB

L=1
Θ=64, L=2

Θ=512, L=8
Θ=1024, L=16
Θ=3072, L=32

Polar Arikan with CRC, L=32

Figure 2. Performance of (4096, 2048) polar codes

Ct, respectively. Observe that the most probable codeword

cl−1
0 in coset vt−1

0 B0..t−1 +Ct−1 has already been computed

at step t − 1 . Obviously, c[0]l−1
0 or c[1]l−1

0 is equal to cl−1
0 ,

so at the t-th step it remains to invoke decoder for Ct only

once.

It can be seen that the complexity of computing

R(usl+t
0 , yn−1

0), uls+t ∈ {0, 1} , 0 ≤ t < l, for intermediate

layers of the decoder is given by
∑l−2

t=0N(l, l− t− 1, ψ, γ)+
O(l log l)+O(l3), where N(l, κ, ψ, γ) is the complexity of the

(κ+ψ, γ) Box and Match algorithm for (l, κ) code, excluding

sorting and information set construction steps.

B. Final layer

At the last layer one needs to construct a list of codewords

given by (10). This can be implemented using either ordered

statistics [11] or a list extension of the Box and Match

algorithm [12].

Observe that one does not need to perform any calculations,

including any processing at intermediate layers, while decod-

ing fully frozen blocks of input symbols.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0 0.5 1 1.5 2 2.5 3

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

Eb/N0, dB

L=1
Θ=64, L=2

Θ=512, L=8
Θ=1024, L=16

Figure 3. Average decoding complexity for (1024, 512) polar code

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

Eb/N0, dB

L=1
Θ=64, L=2

Θ=512, L=8
Θ=1024, L=16
Θ=3072, L=32

Figure 4. Average decoding complexity for (4096, 2048) polar code

VI. NUMERIC RESULTS

Figure 1 illustrates the performance of (1024, 512, 16) polar

code1 with BCH kernel [2] and l = 32 for the case of

BPSK transmission over AWGN channel. For comparison,

the results for Arikan polar code concatenated with CRC and

list decoding (see [3]) is also shown. It can be seen that for

sufficiently large L the proposed decoding algorithm enables

one to achieve near-ML performance. At low SNR polar codes

with BCH kernel outperform Arikan polar code concatenated

with CRC. However, at high SNR the performance of the

former one becomes limited by poor minimum distance. Figure

2 provides similar results for the case of (4096, 2048, 32)
polar code with BCH kernel and l = 64. Although minimum

distance is still quite low, error floor does not appear down

to error probability 10−5. It is possible to improve the perfor-

mance of polar code with BCH kernel by employing dynamic

subchannel freezing techniques introduced in [5].

Figures 3–4 illustrate the average number of iterations per-

formed by the proposed decoding algorithm for the considered

1This polar code was constructed using the method given in [13], and has
codes Υs, 0 ≤ s < n/l, with dimensions 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 7,
11, 13, 16, 21, 21, 24, 26, 26, 28, 29, 31, 31, 31, 31, 31, 32, 32, 32, 32.

codes. Only iterations corresponding to non-empty blocks

of non-frozen symbols are counted. It can be seen that at

sufficiently high SNR, where codeword error probability drops

below 10−3, the proposed algorithm requires in average t
iterations, where t ≤ n/l is the number of non-empty blocks

Ξs.

VII. CONCLUSIONS

In this paper a novel decoding algorithm for binary polar

codes with arbitrary kernel was proposed. The algorithm is a

generalization of the sequential decoding algorithm introduced

earlier for the case of polar codes with Arikan kernel. It

involves near-ML soft-decision decoding of codes generated

by rows of submatrices of the kernel. Simulation results show

that the proposed approach enables one to perform near-ML

decoding of polar codes with BCH kernel. These codes were

shown to outperform Arikan polar codes concatenated in CRC,

at least in the low-SNR region. The proposed algorithm can be

used for decoding of polar codes with dynamic frozen sym-

bols and non-Arikan kernels, which provide higher minimum

distance, and can avoid therefore an error floor.

ACKNOWLEDGEMENTS

This work was supported by Russian Foundation for Basic

Research under the grant 12-01-00365-a.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE

Transactions On Information Theory, vol. 55, no. 7, pp. 3051–3073, July
2009.

[2] S. B. Korada, E. Sasoglu, and R. Urbanke, “Polar codes: Characteri-
zation of exponent, bounds, and constructions,” IEEE Transactions On

Information Theory, vol. 56, no. 12, pp. 6253–6264, December 2010.
[3] I. Tal and A. Vardy, “List decoding of polar codes,” in Proceedings of

IEEE International Symposium on Information Theory, 2011.
[4] K. Niu and K. Chen, “CRC-aided decoding of polar codes,” IEEE

Communications Letters, vol. 16, no. 10, October 2012.
[5] P. Trifonov and V. Miloslavskaya, “Polar codes with dynamic frozen

symbols and their decoding by directed search,” in Proceedings of IEEE

Information Theory Workshop, September 2013, pp. 1 – 5.
[6] V. Miloslavskaya and P. Trifonov, “Sequential decoding of polar codes,”

IEEE Communications Letters, vol. 18, no. 7, pp. 1127–1130, 2014.
[7] U. Wachsmann, R. F. H. Fischer, and J. B. Huber, “Multilevel codes:

Theoretical concepts and practical design rules,” IEEE Transactions On

Information Theory, vol. 45, no. 5, pp. 1361–1391, July 1999.
[8] A. Abedi and A. Khandani, “An analytical method for approximate

performance evaluation of binary linear block codes,” IEEE Transactions

On Communications, vol. 52, no. 2, February 2004.
[9] I. Dumer, G. Kabatiansky, and C. Tavernier, “Soft-decision list decoding

of Reed-Muller codes with linear complexity,” in Proceedings of IEEE

International Symposium on Information Theory, 2011.
[10] A. Valembois and M. Fossorier, “Box and match techniques applied

to soft-decision decoding,” IEEE Transactions on Information Theory,
vol. 50, no. 5, May 2004.

[11] M. P. Fossorier and S. Lin, “Soft-decision decoding of linear block codes
based on ordered statistics,” IEEE Transactions on Information Theory,
vol. 41, no. 5, pp. 1379–1396, September 1995.

[12] P. A. Martin, D. Taylor, and M. P. Fossorier, “Soft-input soft-output
list-based decoding algorithm,” IEEE Transactions On Communications,
vol. 52, no. 2, February 2004.

[13] V. Miloslavskaya and P. Trifonov, “Design of polar codes with arbitrary
kernels,” in Proceedings of IEEE Information Theory Workshop, 2012,
pp. 119–123.

