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Abstract—A method for construction of polar subcodes with

reduced error coefficient is presented. The proposed approach

relies on explicit enumeration of low-weight non-zero codewords

in a polar code, and construction of dynamic freezing constraints

which define a subcode not containing most of these codewords.

The obtained codes provide a large performance gain in the high-

SNR region compared to non-optimized polar subcodes and polar

codes with CRC.

Index Terms—Polar codes, polar subcodes, weight distribution.

I. INTRODUCTION

Polar codes is a novel class of capacity-achieving codes,

having low-complexity construction, encoding and decoding

algorithms [1]. Classical polar codes have rather low minimum

distance, and the successive cancellation (SC) decoding algo-

rithm is highly suboptimal for finite length codes. Therefore,

improved code constructions were suggested, such as polar

codes with CRC [2], [3] and polar subcodes [4], [5], together

with improved decoding algorithms [2], [6]. These construc-

tions were shown to provide excellent performance for block

length up to a few thousands bits, although for longer block

length they are outperformed by LDPC codes. As a result,

polar codes were adopted in 5G for use in the control channel

only [7], [8].

Very high scaling exponent of Arıkan’s polar codes [9] does

not allow them to compete well at large block length with other

modern code constructions, such as LDPC codes. Polar codes

with large kernels [10] were shown to asymptotically achieve

optimal scaling exponent [11]. In general, the decoding com-

plexity of such codes is very high. However, low-complexity

decoding algorithms were derived for some specific kernels

[12], [13], [14]. Together with the successive cancellation

list (SCL) decoding method, these techniques allow decoding

with much lower complexity compared to codes based on the

Arıkan’s kernel with the same performance.

Next generation machine-to-machine communication re-

quires very low block error rate (e.g. less than 10−5). This

requirement must be taken into account in the design of the

corresponding error correcting codes. Unfortunately, there are

still no rigorous theoretical tools for performance evaluation

of the SCL decoding algorithm. Simulations suggest that the

performance of polar codes and their improved versions under

SCL decoding depends both on their SC and ML decoding

error probability. Increasing list size allows the performance
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of the SCL decoder to approach the performance of the ML

decoder. At high SNR, the ML decoding error probability

depends on the number of low weight non-zero (LWNZ)

codewords in the code and, in particular, its error coefficient. It

was shown in [15] that the scaling exponent, which is known

to be quite high for Arikan’s polar codes, does not improve

when adding a finite list to the MAP decoder. This means that

the construction of polar codes needs to be modified somehow

to obtain better performance.

In this paper we present a method for construction of

polar subcodes with reduced error coefficient, and show that

the obtained codes provide better performance under SCL

and sequential decoding compared to polar codes with CRC,

randomized and algebraic polar subcodes. The main results of

the paper include:

• Analysis of minimum distance of polar codes with

generic kernels (Theorem 1).

• Analysis of the impact of type-B dynamic frozen symbols

on the minimum distance of polar codes (Theorem 2).

• Extension of the construction of randomized polar sub-

codes to arbitrary kernels.

The paper is organized as follows. Section II presents an

overview of polar codes and polar subcodes. The proposed

code construction method is derived in Section III. Simulation

results are presented in Section IV.

II. BACKGROUND

A. Channel polarization

Let Fl be an invertible l × l matrix not permutation-

equivalent to an upper triangular matrix. (n = lm, k) polar

code with kernel Fl is a set of vectors c = cn−1
0 = un−1

0 A,

where A = F⊗m
l , ui = 0, i ∈ F , F ⊂ [n] is the set of frozen

symbol indices (frozen set), m ∈ N, and [n] = {0, . . . , n− 1}.

Let Ui,Ci,Yi be random variables corresponding to input

values of the polarizing transformation, channel input and

output symbols, respectively. Matrix A together with a binary-

input memoryless channel W (Y|C) gives rise to synthetic bit

subchannels

W (i)
m (Yn−1

0 ,Ui−1
0 |Ui) =

∑

Un−1
i+1 ∈F

n−i−1
2

W (Yn−1
0 |Un−1

0 A)

2n−1
,

where W (Yn−1
0 |Cn−1

0 ) =
∏n−1

j=0 W (Yj |Cj). The capacities

Ci of these subchannels converge with m → ∞ to 0 or 1, and

the fraction of almost noiseless subchannels converges to the

capacity C of the original channel W [10].

Efficient techniques for evaluation of the reliabilities of

these subchannels were suggested in [16], [17] for the case
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of the Arıkan’s kernel F2 =

(
1 0
1 1

)
, and in [18], [19], [20]

for larger kernels. For a classical polar code, the frozen set

F is selected as the set of indices i of n − k least reliable

bit subchannels W
(i)
m , where k is code dimension. That is,

assuming that rj is the sequence of distinct integers, such that

Cr0 ≤ Cr1 ≤ · · · ≤ Crn−1 , the frozen set is constructed as

F = {r0, . . . , rn−k−1}.

The SC decoding error probability of a polar code of rate

R < C satisfies 2−nβ′

≤ PSC ≤ 2−nβ

for sufficiently large n
and any β, β′ : β < E(Fl) < β′, where

E(Fl) =
1

l

l−1∑

i=0

logl Di

is the rate of polarization of kernel Fl, and Di is the i-th
partial distance of Fl, i.e. the minimum distance between the

i-th row of Fl and the space generated by rows i+1, . . . , l−1
[10].

Several kernels of different dimensions can be combined in

the construction of a polarizing transformation [21], i.e. it can

be defined as

A = Fl0 ⊗ Fl1 ⊗ · · ·Flm−1 .

This results in a polar code of length n =
∏m−1

i=0 li. Rate of

polarization for such transformation can be computed from

E(Fli) as described in [22].

B. Low-weight codewords of polar codes with Arıkan’s kernel

Polar codes with Arıkan’s kernel were shown to be instances

of decreasing monomial codes [23]. That is, their codewords

are given by evaluation vectors of Zhegalkin polynomials of

certain type. Recall, that Zhegalkin polynomial is a polynomial

in variables x0, . . . , xm−1 over the integers modulo 2 [24].

Indeed, the rows of the Arıkan matrix F⊗m
2 can be consid-

ered as evaluation vectors of some Zhegalkin monomials in

variables x0, x1, . . . , xm−1 in all points of Fm
2 .

Example 1. For m = 3, the Arıkan polarizing matrix is given

by

A =









































1 0 0 0 0 0 0 0 x0x1x2
1 1 0 0 0 0 0 0 x1x2
1 0 1 0 0 0 0 0 x0x2
1 1 1 1 0 0 0 0 x2
1 0 0 0 1 0 0 0 x0x1
1 1 0 0 1 1 0 0 x1
1 0 1 0 1 0 1 0 x0
1 1 1 1 1 1 1 1 1

Assuming that F = {0, 1, 2}, one obtains that any codeword

c = un−1
0 A of (8, 5) polar code is given by a vector of values

of some polynomial

u(X) = u(x0, x1, x2) = u7·1+u6·x0+u5·x1+u4·x0x1+u3·x2

in points (1, 1, 1), . . . , (0, 0, 0).

The frozen set F for Arıkan polar code is known to satisfy

the following partial order constraints [25], [23]. For any i =∑m−1
j=0 ij2

j /∈ F , where ij ∈ {0, 1}, one has

is = 0 ⇒ (i + 2s) /∈ F , 0 ≤ s < m (1)

is = 0, it = 1, s > t ⇒ (i + 2s − 2t) /∈ F . (2)

This was used in [26] to derive an algorithm for construction

of polar codes with sublinear complexity.

Given a polynomial u(xm−1
0 ) corresponding to a codeword

of a polar code, define v(xm−1
0 ) = u(Bxm−1

0 +b), where B is

some non-singular m×m matrix, and b ∈ F
m
2 . The evaluation

vector of v(xm−1
0 ) is obtained by permuting the evaluation

vector of u(xm−1
0 ). However, v(xm−1

0 ) does not necessarily

correspond to a valid codeword of the considered polar code.

It was shown in [23] that the automorphism group of a

polar code includes lower triangular affine group LTA(m, 2),
i.e. v(xm−1

0 ) is guaranteed to correspond to a valid codeword

if B is an arbitrary m × m lower-triangular matrix with 1’s

on the diagonal, and b is an arbitrary binary vector.

Furthermore, all distinct weight-d codewords of an Arıkan

polar code with minimum distance d = 2r, where r =
mini/∈F wt(i), can be obtained as evaluation vectors of poly-

nomials gi(Bxm−1
0 + b), i ∈ {0, . . . , 2m − 1} \ F , where

matrices B satisfy

Btj = 0 if t /∈ ind(gi) ∨ j ∈ ind(gi),

and vectors b are such that t /∈ ind(gi) ⇒ bt = 0. Here

wt(i) denotes the number of non-zero bits in the base-2

expansion of integer i, gi(x
m−1
0 ) =

∏m−1
j=0 x

1−ij
j are the

monomials corresponding to the rows of Arıkan matrix F⊗m
2

of weight d. and ind(g) = {t : xt|g} for some monomial

g = g(xm−1
0 ). This implies that any unfrozen symbol i, such

that wt(i) = r, induces a number of weight-2r codewords,

such that ui = 1, uj = 0, j < i.
The total number of such codewords, i.e. the error coeffi-

cient of the polar code, is given by [23]

wd = 2m−r
∑

i∈[n]\F
wt(i)=r

2|λi|, (3)

where λi = ind(gi) is the list of indices of zero bits in integer

i, and

|(i0, . . . , im−r−1)| =
m−r−1∑

j=0

(ij − j).

C. Polar subcodes

Classical polar codes exhibit quite poor finite-length per-

formance due to their low minimum distance. Substantially

better performance can be obtained by employing polar sub-

codes [4], [27]. The construction of polar subcodes relies on

dynamic frozen symbols, i.e. input symbols of a polarizing

transformation, which are given by

uji =
∑

s<ji

Vi,sus, i ∈ F , (4)

where V is a (n− k)×n constraint matrix, such that the last

non-zero elements of its rows are located in distinct columns

ji, 0 ≤ i < n−k. The constraint matrix can be obtained either

from a check matrix of an algebraic code (e.g. extended BCH)

with sufficiently large minimum distance, or constructed by a

pragmatic randomized algorithm [5], so that most of the low-

weight codewords of the original polar code do not satisfy (4),

and are therefore eliminated from the obtained polar subcode.
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Fig. 1: Generalized concatenated encoder

The constraint matrix of a classical polar code consists of

n − k rows of weight 1, where 1’s are located in columns

corresponding to frozen symbols.

Decoding of polar subcodes can be implemented by the SCL

or sequential algorithms [2], [6], [28].

D. Generalized concatenated codes

A generalized concatenated code (GCC) [29], [30] over Fq

is defined using a family of nested inner (n, ki, di) codes

C(i) : C(0) ⊃ C(1) ⊃ · · · ⊃ C(ν−1), and a family of outer

(N,Ki, Di) codes C(i), where the i-th outer code is defined

over Fqki−ki+1 , 0 ≤ i < ν, kν = 0. In this paper we assume

that ki = ki+1 +1, ν = n. Let G be a n×n matrix, such that

its rows i, . . . , n−1 generate code C(i). GCC encoding is per-

formed as follows. First, partition a data vector into n blocks

of size Ki, 0 ≤ i < n. Second, encode these blocks with codes

C(i) to obtain codewords (c̃i,0, . . . , c̃i,N−1). Finally, multiply

vectors (c̃0,j , . . . , c̃n−1,j), 0 ≤ j < N, by G to obtain a GCC

codeword (c0,0, . . . , cn−1,0, c0,1, . . . , cn−1,N−1). This process

is illustrated in Figure 1.

A GCC generator matrix can be obtained as

G =




G(0) ⊗ G0,−

G(1) ⊗ G1,−

...

G(n−1) ⊗ Gn−1,−


 ,

where G(i) is a generator matrix of C(i), and Gi,− denotes the

i-th row of G. It is possible to show that this encoding method

results in a (Nn,
∑n−1

i=0 Ki,≥ mini diDi) linear block code.

III. POLAR SUBCODES WITH REDUCED ERROR

COEFFICIENT

The error probability of the Tal-Vardy list decoding algo-

rithm for polar (sub)codes is given by

P (L) = PML + P (E(L)|C), (5)

where PML is the maximum likelihood decoding error proba-

bility of the considered code, C is the event corresponding

to the maximum likelihood decoder producing the correct

codeword un−1
0 Am, and E(L) is the event corresponding to

the score of the correct vector becoming lower than the scores

of L incorrect vectors ûi
0 at some intermediate phase, so that

the correct vector is killed by the decoder. The value of PML

can be estimated via the union bound as

PML ≤
n∑

i=d

wiQ

(√
2i

Es

N0

)
=

n∑

i=d

wiQ

(√
2iR

Eb

N0

)
,

where wi is the number of codewords of weight i. At high

SNR it depends primarily on d, minimum distance of the code,

and wd, the error coefficient. To the best of author knowledge,

there are still no techniques for computing P (E(L)|C). How-

ever, experiments show that this quantity increases with PSC ,

the error probability of the successive cancellation decoder.

Hence, obtaining a code with good performance under SCL

decoding requires both PSC and PML to be sufficiently small.

In what follows, we propose a method for construction of

a subcode of a polar code, such that most of the low-weight

codewords, which appear in the original polar code, are not

included into the polar subcode. At the same time, we aim to

keep the successive cancellation decoding error probability of

the obtained code as low as possible.

A. Low-weight codewords of polar codes

In this section we characterize the information vectors of

LWNZ codewords of polar codes obtained from a large class

of kernels. Essentially, we show that, for a sufficiently general

class of kernels, any such codeword is generated by at least

one low-weight row of the polarizing matrix A.

Theorem 1. Consider an (n, k) polar code C given by a

polarizing transformation A = Fl0 ⊗ · · · ⊗ Flm−1 and the

set of frozen symbol indices F , where Fli is an li-dimensional

kernel, such that its partial distances Di,j satisfy

Di,j = wt((Fli)j), 0 ≤ j < li, 0 ≤ i < m, (6)

n =
∏m−1

i=0 li, and (Fli )j is the j-th row of Fli . Then:

1) The minimum distance of the polar code is d =
mins/∈F wt(As), where As is the s-th row of matrix A,

0 ≤ s < n.

2) Any codeword c = un−1
0 A of weight d, where d is the

minimum distance, has us = 1 for some s : wt(As) = d.

Proof:

It is sufficient to consider the case of Di,j ≤ Di,j+1, 0 ≤
j < li − 1, since otherwise the corresponding rows of Fli

can be swapped [10, Proposition 15] together with appropriate

modification of the set F , so that the code remains the same. In

this case Di,j is the minimum distance of the code generated

by rows j, . . . , li − 1 of Fli .

Both statements for m = 1 follow from (6). Assume

that the theorem holds for some A =
⊗m−1

i=0 Fli with

m ≥ 1, and consider the polarizing transformation A′ =⊗m
i=0 Fli . Then wt(A′

tlm+j) = wt(At)wt((Flm)j), where

j ∈ [lm], t ∈ [n]. Consider a polar code with polarizing

transformation A′ and the frozen set F . It can be considered

as a GCC with outer (lm,Kt, Dt) codes C(t) and inner

(n, kt, dt) codes C(t), where C(t) is generated by Flm,j :
tlm + j /∈ F , and C(t) is a polar code with polarizing

transformation A and the set of frozen symbol indices F (t) =
{r|∀j : 0 ≤ j < lm : lmr + j ∈ F , t ≤ r < n} , 0 ≤ t < n.
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Then the minimum distance of the GCC is d ≥ dtDt, where

dt = minj /∈F(t) wt(Aj), and Dt ≥ minj:lmt+j /∈F Dm,j . This

bound is achieved with equality, since there is a weight-d
codeword in C given by a row tlm + j /∈ F of A′.

The second statement also holds for any m, since if a

codeword of C has ut = 0 for all t : wt(At) = d, then

it belongs to a code with the set of frozen symbol indices

F ′ = F \ {t|wt(At) = d}, which has minimum distance

d′ > d, according to the first statement.

The above theorem allows to design constraints on the input

symbols of the polarizing transformation, such that most of

the LWNZ codewords of a polar code do not satisfy them,

obtaining thus a subcode of the polar code with low error

coefficient.

B. Type-A dynamic frozen symbols

To obtain an (n, k) code with good performance under SCL

decoding, we need to eliminate low-weight non-zero (LWNZ)

codewords from a polar code. This can be done by introducing

dynamic freezing constraints (4). To obtain an (n, k, d) code

C, we propose to construct first an (n, k + fA, d) polar code

C (parent code) with constraint matrix V , and obtain the

constraint matrix for code C as V =

(
V

V (A)

)
. Here V (A) is

a fA × n matrix, which defines dynamic freezing constraints,

such that most of the LWNZ codewords of the parent code do

not satisfy them, so that C does not contain these codewords.

Let us further define F as the set of frozen symbol indices

given by V .

To reduce the probability of the correct path being killed by

the SCL decoder at an early phase, these constraints need to be

imposed on symbols usi with the smallest possible indices si
in such way, so that low-weight codewords are still eliminated.

Theorem 1 suggests that this can be done by extending the

construction of [5], i.e. by selecting si as fA maximal indices,

such that wt(Asi) = d, where d is the minimum distance of

the parent polar code C, and selecting V
(A)
i,j , 0 ≤ j < si, 0 ≤

i < fA, as independent random binary values. Furthermore,

we set V
(A)
i,si

= 1 and V
(A)
i,j = 0, j > si. Indeed, such choice

of si ensures that for any LWNZ codeword c = un−1
0 A ∈ C

it is possible to find such values V
(A)
i,j , so that un−1

0 does not

satisfy (4), i.e. c /∈ C. For small values of fA it may not be

possible to eliminate all LWNZ codewords in this way, but the

results given in [5] suggest that even for randomized selection

of V (A) the obtained codes provide quite good performance

compared to polar codes with CRC and LDPC codes.

However, more careful design is possible. We propose to

explicitly enumerate (almost) all non-zero codewords c(p), 0 ≤
p < P, of the parent code with weight up to ∆ ≥ d. For

polar codes with Arıkan’s kernel and ∆ = d, this can be

done as described in Section II-B. For codes based on other

kernels, LWNZ codewords can be obtained with the algorithm

presented in [31]. Let u(p) = c(p)A−1 be the information

vectors corresponding to the obtained LWNZ codewords, and

let P =
{
c(p)
}

. We say that codeword c(p) is pruned by

constraint i if

u(p)
si 6=

∑

t<si

V
(A)
i,t u

(p)
t . (7)

Let P(V
(A)
i ) be the set of codewords pruned from P by the

constraint given by the i-th row of V (A). We propose to select

for each i the coefficients V
(A)
i,j so that |P(V

(A)
i )| is maxi-

mized. This can be implemented by generating randomly T

vectors of coefficients (V
(A)
i,0 , . . . , V

(A)
i,n−1), such that V

(A)
i,si

= 1

and V
(A)
i,t = 0, t > si, checking (7) for each codeword

in P , and selecting the vector which prunes the maximal

number of low-weight codewords. Having obtained P(V
(A)
i ),

we set P := P \ P(V
(A)
i ), and proceed with construction of

the dynamic freezing constraints for the next suitable index

si′ < si.

The particular indices si to be considered in the above

described elimination process should be as small as possible,

so that the SCL decoder can process them at earliest possible

phases, reducing thus the probability of the correct path being

killed. On the other hand, constraints (4) should involve all

symbols ut which may give rise to a LWNZ codeword, so

that as many as possible such codewords are pruned by each

constraint.

Let v0 < v1 < . . . be distinct weights of rows of A, which

correspond to non-frozen symbols in the parent code. For any

t we define f (t) as the maximal index of a symbol, such that

wt(Af(t)) = vt, and f (t) is not yet frozen, i.e. f (t) /∈ F ,

and f (s) is not equal to any of the previously selected si. If

no such symbol exists, we assume f (t) = −∞. Let us set

initially ρ = 0. We propose to set si as f (t), provided that

f (t) ∈ [n], and the number of LWNZ codewords, which can

be pruned for this si as described above, is at least (12 −δ)|P|,
where δ is a small value. The latter constraint ensures that

no dynamic freezing constraints are imposed on information

symbols which give rise to too few LWNZ codewords, and

in many cases results in much lower error coefficient of the

obtained code. Otherwise, we set ρ := ρ + 1 and repeat this

selection process until fA dynamic freezing constraints are

constructed.

The parameter fA should be selected as the smallest integer,

which results in the number of LWNZ codewords in the

obtained code to achieve some target value (e.g. 0). The

dynamic freezing constraints and the corresponding dynamic

frozen symbols obtained in this way are referred to as type-A

ones.

Example 2. Consider construction of a (16, 7) polar sub-

code with the Arıkan’s kernel for the BEC with erasure

probability 0.5. Let fA = 2. The corresponding parent

(16, 9) polar code has frozen set F = {0, 1, 2, 3, 4, 5, 8}.

It has 44 codewords of weight 4. The corresponding in-

formation vectors are shown in Table I. Let s0 = 12
be the index of the 0-th dynamic frozen symbol. It can

be verified that V
(A)
0 = (0111111111111000) prunes 24

LWNZ codewords. The indices of surviving codewords are

2,3,5,7,10,11,13,15,18,19,21,24,26,27,29,32,34,35,38,39. Let

s1 = 10 be the index of the 1-st dynamic frozen symbol. It

can be verified that V
(A)
1 = (0010100101100000) prunes 12

codewords. The indices of surviving codewords are 2, 7, 10,

15, 18, 24, 26, 32. Hence, the constraint matrix of the obtained
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TABLE I: Information vectors u15
0 for weight-4 codewords of (16, 9, 4) polar code

ID u15
0

1 0000001000000000

2 0000001000001000

3 0000001000100000

4 0000001000101000

5 0000001100000000

ID u15
0

6 0000001100001100

7 0000001100110000

8 0000001100111100

9 0000001000000010

10 0000001000001010

ID u15
0

11 0000001000100010

12 0000001000101010

13 0000001100000011

14 0000001100001111

15 0000001100110011

ID u15
0

16 0000001100111111

17 0000000001000000

18 0000000001100000

19 0000000001001000

20 0000000001101010

ID u15
0

21 0000000001010000

22 0000000001110000

23 0000000001011010

24 0000000001111000

25 0000000001000100

ID u15
0

26 0000000001100110

27 0000000001001100

28 0000000001101100

29 0000000001010101

30 0000000001110111

ID u15
0

31 0000000001011111

32 0000000001111111

33 0000000000100000

34 0000000000101000

35 0000000000110000

ID u15
0

36 0000000000111100

37 0000000000100010

38 0000000000101010

39 0000000000110011

40 0000000000111111

ID u15
0

41 0000000000001000

42 0000000000001100

43 0000000000001010

44 0000000000001111

polar subcode is

V =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0




Observe that it is possible to zero out the columns with

indices in F in the bottom part of this matrix by performing

appropriate row operations.

C. Type-B dynamic frozen symbols

In this section we further refine the construction of polar

subcodes by reducing the probability of the SCL decoder

killing the correct path at an early phase.

The probability of E(L), the event corresponding to the

score of the correct path becoming lower than the scores of L
incorrect paths at some intermediate phase of SCL decoding,

depends on how fast the scores of incorrect paths decrease

after these paths diverge from the correct one. Therefore,

we propose to introduce an additional set of dynamic frozen

symbols, mapped onto relatively reliable bit subchannels, so

that for an incorrect path the values of these symbols would

deviate with high probability from those used by the encoder,

causing thus the path score to drop.

Let Ci be the capacity (or some other reliability measure)

of bit subchannel W
(i)
m , and consider sequence ri : Cr0 ≤

Cr1 ≤ · · · ≤ Crn−1 .

It was suggested in [5] to impose non-trivial dy-

namic freezing constraints on fB symbols uri , which are

going to be transmitted over subchannels with indices

rn−k−fA−1, . . . , rn−k−fA−fB , i.e. most reliable bit subchan-

nels which would carry static frozen symbols in a classical

polar code. Here fB is a parameter of the code construction.

Such dynamic freezing constraints are referred to as type-

B ones. Here we show that for a certain class of polarizing

transformations this does not decrease the minimum distance.

Theorem 2. Consider an (n, k, d) polar subcode C based on

the polarizing matrix A = Fl0 ⊗ · · · ⊗ Flm−1 with constraint

matrix V =




V ′

V ′′

V (A)



, such that the kernels Fli satisfy (6),

both V ′ and

(
V ′

V ′′

)
are constraint matrices of some (n, k′, d)

and (n, k′′, d) polar codes, all rows of V ′ and V ′′ have weight

1, si is the position of last non-zero entry in the i-th row of

V , all si are distinct, and wt(Asi) = d, n− k′ ≤ i < n− k′′.

Let Ṽ =




V ′

V (B)

V (A)


 be a matrix, such that Ṽi,t = V ′′

i,t, si ≤

t < n, and Ṽi,t, t < si, n − k′ ≤ i < n − k′′, are arbitrary

binary values1.

Then Ṽ defines another (n, k, d̃) polar subcode C̃, where

d̃ ≥ d.

Proof: By construction of Ṽ , the sets of frozen symbol

indices for both C and C̃ are identical. Let F denote this set.

According to [22, Theorem 7], partial distances of matrix

A satisfy Di = wt(Ai) =
∏m−1

j=0 Dj,ij , where Ai is the i-th

row of A, and i =
∑m−1

j=0 ij
∏m−1

t=m−j lt. Given a non-zero

codeword c = un−1
0 A from either C or C̃, let t /∈ F be

the position of the first non-zero element in vector un−1
0 , so

that c ∈ At + St, where St is the linear space generated by

At+1, . . . , An−1. The minimum distance between the coset

At + St and St is equal Dt. Hence, wt(c) ≥ Dt. Since

the frozen set F is identical for C and C̃, one obtains that

d̃ ≥ d = mint/∈F Dt.

D. Summary of the proposed code construction method

Here we present a summary of the proposed method for

construction of (n, k) polar subcode with an n×n polarizing

matrix A satisfying the assumptions of Theorem 1:

1) Compute the capacities (or other reliability measures)

of bit subchannels W
(i)
m . Let rn−1

0 be the sequence

of subchannel indices in the ascending order of their

reliability.

2) Construct parent polar code C′ with the frozen set F ′ =
{r0, . . . , rn−k−fA−fB−1}, where fA and fB are parame-

ters of the code construction. Let V ′ be the corresponding

constraint matrix, i.e. V ′
i,s =

{
1, if s = ri,

0 otherwise,
and let

ji = ri, 0 ≤ i < n − k − fA − fB, be the indices of

frozen symbols.

3) Compute minimum distance d and enumerate (almost) all

codewords c of weight d in C′. Recall, that for codes with

Arıkan’s kernel all such codewords can be enumerated

explicitly as described in Section II-B, while in a more

general case computer search can be used to obtain them.

Let P be the set of such codewords.

4) Construct matrix V (B), such that V
(B)
i,rn−k−fA−fB+i

=

1, V
(B)
i,j = 0, j > rn−k−fA−fB+i, 0 ≤ i < fB, while

the remaining elements of V (B) are selected as indepen-

dent random binary values. Exclude from P codewords

c = uA, such that V (B)
u
T 6= 0.

If a generic low-weight codeword search algorithm like

[31] is used, then it may be easier to construct first a code

C with constraint matrix V =

(
V ′

V (B)

)
, and search for

LWNZ codewords in C instead of C′.

1That is, V (B) is obtained by replacing some zeroes in V ′′ with random
values.
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TABLE II: Number of weight-8 codewords in (1024, 768,≥ 8)
polar subcodes with Arıkan’s kernel

fA parent code unoptimized subcode optimized subcode

0 41344 41344 41344

1 57728 28808 28696

2 57728 14380 14108

3 57728 7152 6840

4 57728 3490 3258

5 57728 1736 1484

6 57728 813 632

7 61824 379 240

8 70016 149 48

9 70016 68 7

10 70016 24 0

5) Let v0 < v1 < . . . be distinct weights of rows of A,

which correspond to non-frozen symbols in the parent

code. Select the indices si /∈ F of type-A DFS as fA
maximal integers, such that wt(Asi) = vj for smallest

possible j. Construct fA × n matrix V (A), such that

V
(A)
i,si

= 1, V
(A)
i,j = 0, j > si, and for each i the

values V
(A)
i,t , t < si are successively selected (e.g. by

T iterations of randomized search) to eliminate as many

as possible codewords from P . Integer si is accepted as

a type-A DFS index only if the corresponding constraint

results in elimination of at least (0.5 − δ) · 100% of the

remaining LWNZ codewords, where δ is a small value.

Let Ṽ =




V ′

V (B)

V (A)



 be the constraint matrix of the

obtained polar subcode.

The number of type-A dynamic frozen symbols fA can be

adjusted depending on the residual number of low-weight

codewords after step 5. Unfortunately, there is no simple way

(besides simulations) to find an optimal value of the number

fB of type-B dynamic frozen symbols.

E. Preconditioned polar subcodes

A simple way to improve the minimum distance of polar

codes satisfying the constraints of Theorem 1 is to enforce at

steps 1 and 2 i ∈ F ′ for all i : wt(Ai) < d for some integer

d. This results in a code with minimum distance at least d. In

the case of Arıkan kernel, such codes still satisfy the partial

order (1)–(2), and their low-weight codewords can be obtained

as described above. However, such polar codes typically have

huge error coefficient.

We propose to use such polar codes as parent ones, and

employ the above described algorithm to obtain preconditioned

polar subcodes with much lower error coefficient and improved

performance under near-ML decoding.

IV. NUMERICAL RESULTS

Table II presents the number of weight-8 codewords of

parent (1024, 768 + t) polar codes and their (1024, 768)
subcodes with fA type-A and fB = 0 type-B dynamic frozen

symbols. It can be seen that the error coefficient of parent

codes increases very slowly with fA. This justifies application

TABLE III: Distance properties of (1024, 768) polar subcodes

with Arıkan’s kernel

Code construction d wd

unoptimized, fA = 11, fB = 0 8 9

unoptimized, fA = 11, fB = 53 8 ≥ 6

optimized, fA = 11, fB = 0 12 ≥ 5658

optimized, fA = 11, fB = 53 12 ≥ 2682

optimized, fA = 16, fB = 50 12 ≥ 548

BCH(12) 12 ≥ 5632

CRC-11 12 30303

CRC-16 12 996

preconditioned d = 16, unoptimized, fA = 0, fB = 0 16 38821056

preconditioned d = 16, unoptimized, fA = 10, fB = 0 16 52820

preconditioned d = 16, unoptimized, fA = 10, fB = 54 16 ≥ 2962

preconditioned d = 16, optimized, fA = 10, fB = 0 16 51324

preconditioned d = 16, optimized, fA = 10, fB = 54 16 ≥ 2630

of type-A dynamic frozen symbols for reduction of the error

coefficient. It can be also seen that increasing fA results in

lower error coefficient for the codes obtained by the proposed

optimization procedure.

We present the performance of polar subcodes obtained with

the proposed method. Simulations were performed for the case

of BPSK modulation and AWGN channel. Decoding was done

by the sequential algorithm [6], [28], with at most L visits per

phase (equivalent to list size in [2]).

Figure 2 presents the performance of (1024, 768) polar

subcodes with Arıkan’s kernel. The codes were constructed

for Eb/N0 = 3 dB. We report the performance of unoptimized

randomized polar subcodes [5], and the codes obtained with

the proposed code construction algorithm with T = 1000.

For comparison, we report also the performance of polar

codes with CRC, as well as a polar subcode of the extended

BCH code with minimum distance 12 [4]. CRC-fA can be

considered as an alternative way to select a quasi-random

linear subcode of the parent (n, k + fA, d) polar code, so

that most of the LWNZ codewords are eliminated. For some

codes we report a lower bound on the maximum likelihood

decoding error probability, which is obtained as the fraction of

events corresponding to the codeword obtained by the decoder

being closer to the received vector than the actual transmitted

codeword.

It can be seen that the proposed optimized polar subcode

with fA = 11 provides 0.5 dB performance gain with respect

to the unoptimized one. It also far outperforms polar code with

CRC and polar subcode of the extended BCH code. Observe

that type-B dynamic frozen symbols provide significant per-

formance improvement for large L. Even larger performance

gain can be obtained by setting fA = 16. However, for small

L at low SNR polar subcode with fA = 16 has inferior

performance compared to the one obtained for fA = 11.

Increasing the value of fA results in much more significant

performance penalty at low SNR for polar codes with CRC.

It can be also seen that at high SNR the performance of the

sequential decoder with L = 32 is almost the same as in the

case of L = 4096.

Table III presents the minimum distance and error coef-

ficient of the considered codes. Entries ≥ w were obtained
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Fig. 2: Performance of (1024, 768) polar subcodes with Arıkan’s kernel
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Fig. 3: Performance of (1024, 768) preconditioned polar sub-

codes with Arıkan’s kernel

by the algorithm in [31], which was allowed to run for 107

iterations. It can be seen that the proposed approach allows

construction of codes with minimum distance d = 12 with

much smaller error coefficient compared to the BCH-based

construction, as well as compared to polar codes with CRC.

Furthermore, type-B dynamic frozen symbols indeed provide

some reduction of the error coefficient. This explains the

performance gain reported in Figure 2.

Figure 3 presents the performance of preconditioned polar

subcodes. These codes have inferior performance at low SNR

compared to the case of F constructed solely based on

subchannel reliability2. This is compensated by 0.4 dB gain

with respect to the non-preconditioned code at FER = 2·10−8

for L = 4096. The total gain with respect to the code obtained

without preconditioning and optimization is approximately 0.7

dB. Observe also that the proposed preconditioned codes with

design distance d = 16 outperform a polar subcode of the

2The latter polar subcodes have minimum distance 12.

extended BCH code with the same design distance, as well

as the codes obtained without preconditioning (these codes

have minimum distance d = 12). However, for L = 32
the preconditioned polar subcode exhibits huge performance

loss compared to the code without preconditioning. It can be

also seen from Table III that with fA = 10 type-A dynamic

frozen symbols the proposed optimization method allows one

to reduce the error coefficient only by 3% for fB = 0
and approximately by 12% for fB = 54. This results in a

marginal performance gain for the proposed codes, although

the sequential decoder with L = 4096 still does not provide

maximum likelihood decoding of the preconditioned codes.

Polar codes were shown in [32] not to have an error floor.

This result was obtained for the case of the SC decoding

algorithm. However, the results shown in Figure 3 clearly show

that improved versions of polar codes, such as polar codes with

CRC and polar subcodes, may exhibit an error floor under

list successive cancellation or sequential decoding, although

their performance is much better compared to polar codes with

the same parameters. Indeed, the slope of the FER curves for

the polar code with CRC and polar subcode with d = 12 is

substantially different at Eb/N0 values 2.8 dB and 3.6 dB. The

reason for this apparent contradiction is that the SC algorithm

is very far from maximum likelihood decoding, especially at

low SNR. List/sequential SC decoding may provide substan-

tially better performance in this region. On the other hand, in

the high SNR region the slope of the FER curve depends on the

minimum distance of the code, which is still given by O(
√
n),

even for improved code constructions. However, the proposed

code construction, especially the preconditioning method, may

substantially reduce the error coefficient, and in some cases

increase (non-asymptotically) the minimum distance of the

obtained codes, and therefore change the location of the error

floor.

Figure 4 presents the performance of rate-1/2 codes. The

results are pretty much similar to those obtained for rate

3/4 codes, i.e. optimized polar subcodes far outperform non-

optimized ones. Optimized polar subcodes without precondi-
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Fig. 4: Performance of (1024, 512) codes

tioning were found to have minimum distance d = 24. Due

to lack of an analytical tool for enumeration of codewords

of an Arıkan polar code of weight more than its minimum

distance, the number of weight-24 codewords in the obtained

polar subcode with fA = 16, fB = 48 could not be optimized.

It was found to be equal to w24 ≈ 347. This is still less than the

error coefficient of the polar code with CRC-16 (w′
24 ≈ 717).

However, the latter code performs slightly better at high SNR.

This should be attributed to the differences in higher-order

components of weight spectrum.

At high SNR the best performance is provided by the

preconditioned polar subcode, which has higher minimum

distance d = 32 than all other considered codes. Even

L = 16384 is not sufficient to implement near-ML decoding

of the preconditioned code. However, increasing L from 4096
to 16384 provides 0.1 dB performance gain, while the average

sequential decoding complexity in the latter case is still

3.98 ·104 operations at Eb/N0 = 2.4 dB. This is quite close to

the decoding complexity of the non-preconditioned optimized

code, which is equal to 1.91 · 104, 1.89 · 104 and 1.62 · 104
for L = 16384, 4096, 32, respectively. Observe for the non-

preconditioned code for L = 4096 all observed error events at

this SNR are ML decoding errors, so this code cannot benefit

from L > 4096.

Figure 5 illustrates the average complexity (i.e. number

of summation and comparison operations) of the sequen-

tial decoding algorithm for the considered codes. It can be

seen that for Eb/N0 ≥ 3.5 dB, where the proposed codes

start to outperform non-optimized ones, the average decoding

complexity is very close to n log2 n operations even for

L = 4096. Furthermore, introducing type-B dynamic frozen

symbols (i.e. setting fB > 0) results in reduced decoding

complexity at low Eb/N0. The decoding complexity of a

polar code with CRC is very close to that of polar subcodes

with fB = 0. Preconditioned code has somewhat higher

decoding complexity compared to the case of F ′ obtained

solely based on subchannel reliability, but at high SNR its

decoding complexity converges to the same value as for the

case of non-preconditioned codes..
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Hence, one can exploit excellent performance of the pro-

posed codes at high SNR with very small decoding complexity.

This comes at the expense of large memory requirements and

high decoder latency. These problems were addressed for the

case of SCL-like decoding in [33].

Figure 6 illustrates the performance of polar (sub)codes with

various kernels under SCL decoding. Here (lm0
0 lm1

1 , k) denotes

a k-dimensional code based on the polarizing transformation

A = F⊗m0

l0
⊗F⊗m1

l1
, and Fli is a li×li kernel. F16 and F32 are

the kernels with scaling exponents 3.45 and 3.202, having rate

of polarization 0.518 and 0.529, respectively, reported in [12].

The proposed optimization method results in up to 0.2 dB gain

compared to a randomized construction without optimized

selection of V (A). Observe that the obtained (1024, 512) code

outperforms the polar subcode of an extended BCH code [4],

where low-weight codewords are eliminated algebraically. It

can be also seen that the pruned mixed-kernel (2048, 1024)
polar subcode outperforms the one with Arıkan’s kernel only,

while the SCL decoding complexity of these codes is 106 and

2 · 106 operations, respectively.
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V. CONCLUSIONS

In this paper a method for construction of polar subcodes

with reduced error coefficient was presented. The obtained

codes were shown to provide at high SNR substantially bet-

ter performance compared to unoptimized randomized polar

subcodes, polar subcodes of extended BCH codes, and polar

codes with CRC.

The proposed code construction method relies on enu-

meration of low-weight codewords in a parent polar code.

This can be done analytically for the case of codes with

Arıkan’s kernel, but requires expensive computer search for

other kernels. Explicit characterization of the set of their

low-weight codewords would enable faster and more accurate

construction of polar subcodes with such kernels.

The proposed codes provide the most significant perfor-

mance gain in the high SNR region. By employing the

sequential decoding algorithm, this gain can be obtained

with decoding complexity close to that of plain successive

cancellation algorithm.
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