
Construction of binary polarization kernels for low

complexity window processing

Grigorii Trofimiuk, Peter Trifonov

ITMO University, Russia

Email: {gtrofimiuk,pvtrifonov}@itmo.ru

Abstract—An algorithm for construction of binary polarization
kernels of size 16 and 32 with polarization rate greater than 0.5,
which admit low complexity processing is proposed. Kernels are
obtained by employing such linear transformations of the Arikan
matrix, which minimize the complexity of the window processing
algorithm, while preserving required rate of polarization. Simu-
lation results show that polar subcodes with obtained kernels can
outperform polar codes with Arikan kernel, while having lower
decoding complexity.

I. INTRODUCTION

Polar codes with large kernels were shown to provide

asymptotically optimal scaling exponent [1]. Many kernels

with various properties were proposed [2], [3], [4], [5]. Until

recently, polar codes with large kernels were believed to be

impractical due to very high decoding complexity.

The window processing algorithm for some polarization

kernels of size 16 and 32 was introduced in [6] and [7]

respectively. This approach exploits the relationship between

the considered kernels and the Arikan matrix. Essentially,

the log-likelihood ratios (LLRs) for the input symbols of the

considered kernels are obtained from the LLRs computed via

the Arikan recursive expressions.

In this paper we present a construction method for polariza-

tion kernels of size 16 and 32 with high rate of polarization,

which admit efficient processing by window based approach.

The proposed method constructs a set of polarization kernels

by performing such linear transformations of Arikan matrix,

which minimize the complexity of the window processing

algorithm. At the same time, these transformations are aimed

on achieving the required rate of polarization.

II. BACKGROUND

A. Channel polarization

Consider a binary-input memoryless channel with transition

probabilities W (y|c), c ∈ F2, y ∈ Y , where Y is output alpha-

bet. A polarization kernel K is a binary invertible l× l matrix,

which is not upper-triangular under any column permutation.

The Arikan kernel is given by Fm =

(
1 0
1 1

)⊗m

.

For a positive integer n, denote by [n] the set of integers

{0, 1, . . . n− 1}. An (n = lm, k) polar code is a linear block

code generated by k rows of matrix Gm = M (m)K⊗m, where

M (m) is a digit-reversal permutation matrix, corresponding to

mapping
∑m−1

i=0 til
i →

∑m−1
i=0 tm−1−il

i,ti ∈ [l]. The encod-

ing scheme is given by cn−1
0 = un−1

0 Gm, where ui, i ∈ F

are set to some pre-defined values, e.g. zero (frozen symbols),

|F| = n−k, and the remaining ui are set to the payload data.

It is possible to show that a binary input memoryless

channel W together with matrix Gm give rise to bit subchan-

nels W
(i)
m,K(yn−1

0 , ui−1
0 |ui), such that their capacities converge

with n to 0 or 1, and fraction of almost noiseless subchannels

converges to I(W) [2]. Selecting F as the set of indices of

low-capacity subchannels enables almost error-free communi-

cation. It is convenient to define probabilities

W
(i)
m,K(ui

0|y
n−1
0) =

W
(i)
m,K(yn−1

0 , ui−1
0 |ui)

2W (yn−1
0)

. (1)

Let us further define W
(j)
m (uj

0|y
n−1
0) = W

(j)
m,K(uj

0|y
n−1
0),

where kernel K will be clear from the context. We also need

probabilities W
(j)
t (uj

0|y
2t−1
0) = W

(j)
1,Ft

(uj
0|y

2t−1
0) for Arikan

matrix Ft. Due to the recursive structure of Gm, one has

W
(sl+t)
m (usl+t

0 |yn−1
0) =

∑

u
l(s+1)−1
sl+t+1

l−1∏

j=0

W
(s)
m−1(θK [u

l(s+1)−1
0 , j]|y

(j+1)n
l
−1

j n
l

) (2)

where θK [u
(s+1)l−1
0 , j]r = (u

l(r+1)−1
lr Gm)j , r ∈ [s + 1].

A trellis-based algorithm for computing these values was

presented in [8].

At the receiver side, one can successively estimate

ûi =

{
argmaxui∈F2 W

(i)
m (ûi−1

0 .ui|y
n−1
0), i /∈ F ,

the frozen value of ui i ∈ F .
(3)

This is known as the successive cancellation (SC) decoding

algorithm.

B. Properties of polarization kernels

1) Rate of polarization: The rate of polarization shows how

fast bit subchannels W
(i)
m,K(yn−1

0 , ui−1
0 |ui) of K⊗m approach

either almost noiseless or noisy channel with n = lm [2].

Let 〈g1, g2, . . . , gk〉 be a linear code, generated by the

vectors g1, g2, . . . , gk. Let dH(a, b) be the Hamming distance

between a and b. Let dH(b, C) = minc∈C dH(b, c) be a

minimal distance between vector b and linear block code C.

We denote the i-th row of a matrix M as M [i].

The partial distances (PDs) Di, i ∈ [l], of the l × l matrix

K are defined as follows:

Di = dH(K[i], 〈K[i+ 1], . . . ,K[l− 1]〉), i ∈ [l − 1]

Dl−1 = dH(K[l− 1],0).

The vector D will be referred to as a partial distances profile

(PDP). Here we assume that a kernel with considered PDP D

exists. In [2] it was shown that for any B-DMC W and any l×l
polarization kernels K with PDP D, the rate of polarization

E(K) is given by E(K) = 1
l

∑l−1
i=0 logl Di.

The Arikan kernel F1 has rate of polarization E(F1) =
0.5, whereas random kernels achieve E = 1. The kernels of

size 16 and 32 with rate of polarization 0.51828 and 0.53656

respectively can be obtained [10].

2) Scaling exponent: Given W and Pe, suppose we wish

to communicate at rate I(W) − ∆ using a family of (n, k)
polar codes with kernel K . It has been shown that this value

of n scales as O(∆−µ(K)), where the constant µ(K) is known

as the scaling exponent [3]. We will compute the scaling

exponent for the case of binary erasure channel (BEC) [9],[3].

The Arikan kernel F1 has µ(K) = 3.627, whereas random

codes achieve optimal µ = 2. The best known scaling

exponents for 16 × 16 and 32 × 32 polarization kernels are

3.346 [6] and 3.127 [10] respectively.

C. Computing kernel input symbols LLRs

In this section we consider computing of probabilities

W
(i)
1 (ui

0|y
n−1
0) for a polarization kernel K . The correspond-

ing task will be referred to as kernel processing.

1) General case: In this work we use the approximate

probabilities

W̃
(j)

1 (uj
0|y

l−1
0) = max

u
l−1
j+1

W
(l−1)
1 (ul−1

0 |yl−1
0), (4)

which were introduced in [11], [12].

Decoding can be implemented using the log-likelihood

ratios of the approximated probabilities (4)

S1,i = ln
W̃

(i)

1 (ui−1
0 .0|yl−1

0)

W̃
(i)

1 (ui−1
0 .1|yl−1

0)
= R(0)−R(1),

where R(a) = max
u
l−1
i+1

lnW
(l−1)
1 (ui−1

0 .a.ul−1
i+1|y

l−1
0). The

value of i will be referred to as a processing phase. The above

expression means that S1,i can be computed by performing

ML decoding of the code, generated by last l−i+1 rows of the

kernel K , assuming that all uj , i < j < l, are equiprobable.

2) Window processing: Let l = 2t. Consider encoding

scheme cl−1
0 = vl−1

0 Ft. Similarly to (4), we define approxi-

mate probabilities W̃
(i)
t (vi0|y

l−1
0) and modified log-likelihood

ratios S
(i)
t (vi−1

0 , yl−1
0) = log

W̃
(i)

t (vi−1
0 .0|yl−1

0)

W̃
(i)

t (vi−1
0 .1|yl−1

0)
of Ft.

It can be seen that

S
(2i)
λ (v2i−1

0 , yN−1
0) = sgn(a) sgn(b)min(|a|, |b|) (5)

S
(2i+1)
λ (v2i0 , yN−1

0) =(−1)v2ia+ b, (6)

where N = 2λ, a = S
(i)
λ−1(v

2i−1
0,e ⊕ v2i−1

0,o , yN−1
0,e), b =

S
(i)
λ−1(v

2i−1
0,o , yN−1

0,o).
Then the log-likelihood of a path vi0 can be obtained as [13]

R(vi0|y
l−1
0) = R(vi−1

0 |yl−1
0) + τ

(
S
(i)
t (vi−1

0 , yl−1
0), vi

)
, (7)

where R(ǫ|yl−1
0) can be set to 0, ǫ is an empty sequence, and

τ(S, v) =

{
0, sgn(S) = (−1)v

−|S|, otherwise.
It was suggested in [14] and [6] to express values

W
(i)
1 (ui

0|y
l−1
0) via W

(j)
t (vj0|y

l−1
0) for some j. Indeed, let

TK = Ft, where the matrix T will be referred to as transition

matrix. Let cl−1
0 = vl−1

0 F⊗t
2 = ul−1

0 K , thus, ul−1
0 = vl−1

0 T.
Observe that it is possible to reconstruct ui

0 from vτi0 , where

τi is the position of the last non-zero symbol in the i-th column

of T . For the sake of simplicity we assume that all τi, i ∈ [l]
are distinct. The general case is considered in [6].

Indeed, vectors ul−1
0 and vl−1

0 satisfy the equation

ui =

l−1∑

j=0

vjT [j, i], (8)

where T [i, j] is the j-th element of row T [i].
Let hi = maxi′∈[i+1] τi′ and Zj be the set of vec-

tors v
hj

0 , such that (8) holds for i ∈ [j]. Let Zi,b ={
vhi

0 |vhi

0 ∈ Zi,where ui = b
}

. Hence, one obtains [6]

S1,i = max
v
hi
0 ∈Zi,0

R(vhi

0 |yl−1
0)− max

v
hi
0 ∈Zi,1

R(vhi

0 |yl−1
0). (9)

Observe that computing these values requires considering

multiple vectors vhi

0 of input symbols of the Arikan matrix

Ft. Let Di = [hi +1]\{τ0, τ1, . . . , τi} be a decoding window,

i.e. the set of indices of independent (from ui−1
0) components

of vhi

0 . Note that |Di| = |[hi+1]|− |{τ0, τ1, . . . , τi}| = hi− i
since all τi are distinct and {τ0, τ1, . . . , τi} ⊆ [hi + 1]. The

calculation of LLRs S1,i via (9) will be referred to as the

window processing algorithm.

The number of path scores to be computed in (9), which

determines the processing complexity, is equal to 2|Di|+1. Let

M(K) denote the maxi∈[l] |Di|. In general, one has M(K) =
O(l) for an arbitrary kernel K .

3) Complexity: In this section we derive an estimate of

the complexity of the window processing algorithm in terms

of the number of arithmetical (summation and comparison)

operations.

The complexity of the window processing algorithm at the

phase i depends on the number of considered paths vhi

0 in

Arikan matrix Ft and complexity of calculation of the path

score R(vhi

0 |yl−1
0) of the single path.

According to (7), calculation of each path score R(vhi

0 |yl−1
0)

requires computing the LLR S
(hi)
t = S

(hi)
t (vhi−1

0 , yl−1
0). The

complexity of computing of S
(hi)
t with reuse of intermediate

LLRs is given by 2B(hi) − 1 operations [15], where B(h) is

a position of the last nonzero bit in the binary representation

of h, i.e. h = 2b0 + 2b1 + · · ·+ 2B(h). If h = 0 then B(h) is

assumed to be t.

Then, to compute (7), one should add the value

R(v
hi−1

0 |yl−1
0) to the value τ

(
S
(hi)
t , vi

)
. As far as vi ∈ [2],

it can be done in at most 1 summation. Therefore, it gives

2|Di| operations more. Moreover, if hi − hi−1 > 1, then the

above described computations should be done for LLRs S
(h)
t ,

hi−1 < h ≤ hi. It can be seen, that the number of such LLRs

is given by 2|Di|−(hi−h) = 2h−i.

In total, the complexity of calculation of path scores

R(vhi

0 |yl−1
0), is given by Λ(i) =

∑hi

h=hi−1+1 2
h+B(h)−i,

where vhi

0 ∈ Zi and h−1 is assumed to be −1.

To compute the LLR S1,i according to (9), one needs

2|Di|+1 comparisons. Note that in the case of hi = hi−1

path scores remain the same. We assume that the maximums

of scores of paths from Zi,b, b ∈ [2], are also known,

since maximums from Zi−1,b were calculated. Therefore, one

substraction needed only to compute the input symbol LLR.

Finally, the complexity of the straightforward implementa-

tion of the window processing algorithm for kernel K can be

estimated as

Ψ(K) =

l−1∑

i=0

Φ(i), (10)

where Φ(i) =

{
2hi−i+1 + Λ(i), hi > hi−1,

1, otherwise.

III. CONSTRUCTION OF POLARIZATION KERNELS

Our goal is to construct polarization kernels with polariza-

tion rate greater that 0.5, which admit low complexity window

processing. Such rate of polarization can be achieved for

kernels of size l = 16 and l ≥ 23 [2]. In this work we focus

on polarization kernels of size 16 and 32.

The minimization of the processing complexity (10) by the

exhaustive search over all polarization kernels K of desired

size and rate of polarization is infeasible. Therefore, we

propose to consider some restricted set of polarization kernels,

which are expected to have moderate window processing

complexity Ψ(K) and required PDP.

Every 2t × 2t polarization kernel K can be derived by

application of elementary operations to rows of Arikan matrix

Ft, since Ft is invertible. The window processing algorithm

exploits this linear relationship to obtain LLRs S1,i (9). The

complexity Ψ(K) of computing these LLRs is also determined

by this linear relationship. Therefore, we will study, how

elementary operations over Ft affect the window processing

complexity Ψ(K) of the obtained kernel K . Further, we

construct the set of kernels by application of such elementary

operations over rows of Ft, which are expected to result in

kernels K with moderate processing complexity Ψ(K), while

having required PDs.

A. Elementary operations

1) Row permutation: Let K be an l× l, l = 2t, polarization

kernel. We express the linear relationship between Ft and K
by the transition matrix T = FtK

−1, which is described in

section II-C2. Recall that τi is the position of the last non-zero

symbol in the i-th column of T , hi = maxi′∈[i+1] τi′ .

Let Pρ be a matrix, which corresponds to the permutation

ρ = [ρ(0), ρ(1), . . . , ρ(l − 1)]. Consider the permuted Arikan

kernel Ft,ρ = PρFt. The transition matrix T of Ft,ρ is given

by FtFt,ρ
−1 = PT

ρ . Thus, all τi, i ∈ [l] are given by ρ(i).

It can be seen than in the case of permuted Arikan kernel,

the value of hi−i becomes positive, once ρ(i) = τi > i, i ∈ [l],
appears in T . Therefore the processing complexity of Ft,ρ

depends on the value of ρ(i)− i in cases, where ρ(i) > i. It

means, that we should keep the values ρ(i) − i as small as

possible to keep the overall processing complexity moderate.

We also introduce the permutation σ, where σ(i) ∈ [l]
are sorted according to the Hamming weight of its binary

representation first and by ascending order second. We denote

the kernel Ft,σ as sorted Arikan matrix. It is noticeable, that

Ft,σ has the minimal window processing complexity among

permuted Arikan matrices Ft,β .

For instance, consider the sorted Arikan kernel F4,σ[5],

where σ = [0, 1, 2, 4, 8, 3, 5, 6, 9, 10, 12, 7, 11, 13, 14, 15]. The

decoding windows Di in this kernel becomes non-empty on

the phases with ρ(i) > i. For example, h4 = ρ(4) = 8,D4 =
{3, 5, 6, 7}. At the next phases i ∈ {5, 6, 7}, hi still equals to

8, which preserves hi > i and leads to increased complexity.

2) Row addition: The i-th PD D[i] of the kernel K might be

increased by performing addition operations over its rows. It

is shown [3], that addition of the row K[i] to row K[j] with

i > j does not change the rate of polarization and scaling

exponent of K . Thus, we consider row additions with i < j.

The addition of two rows can also increase the maximal size

of the decoding windows. Indeed, let Xi,j be an elementary

matrix which corresponds to addition of row i to row j, i 6= j.

In other words, Xi,j is a matrix with 1’s on the diagonal and

Xi,j [j, i] = 1. Note that X−1
i,j = Xi,j .

Let K = T−1Ft. Suppose we added row K[i] to K[j], i < j
and obtained the kernel K̄ = Xi,jK with transition matrix

T̄ = FtK̄
−1 = TXi,j . It means that the matrix T̄ was obtained

by addition of j-th column of T to the i-th one. Let τ̄i be the

position of the last non-zero symbol in the i-th column of T̄ .

After row addition of row i to row j in K , τ̄i = max(τi, τj),
which means that |τ̄i−i| ≥ |τi−i| and the size of the decoding

window |Di| may increase. Therefore, one should use addition

matrices Xi,j with as small as possible values |j − i|.

For example, if we add F3[3] to F3[6], then u3 = v3 ⊕ v6
(8), h3 = τ3 = max(3, 6) = 6 and D3 = {3, 4, 5}.

B. Kernel construction

1) The general construction algorithm: In this section we

describe the general principles of construction of the polariza-

tion kernels with low window processing complexity.

The construction starts from determining the desired PDP

D∗. For convenience, we consider first the case of monoton-

ically increasing PDs (MI-PDs), i.e. D∗[i] ≤ D∗[i + 1], i ∈
[l− 1]. The upper-bound on the MI-PDs was proposed in [4].

Let β ∈ B be a permutation, which results in a permuted

Arikan matrix Fβ with monotonically increasing PDP (MI-

PDP) Dβ = [1, 2∗(t1)
, 4∗(t2)

, . . . , 2t−1

∗(t

t−1)
, 2t], where a∗b de-

notes b-times repetition of an element a. In our construction,

we also assume that D∗[i] ≥ Dβ [i], i ∈ [l].
Our goal is to obtain an l × l, l = 2t, polarization kernel

K with given MI-PDP D∗ and as small as possible window

processing complexity (10). We propose to minimize the

complexity (10) over a set K of candidate matrices M , which

are obtained by employing such elementary operations over

rows of Ft, which minimize the complexity Ψ(M), while

preserving the required MI-PDP D∗.

The naive construction of the set K is as follows. At first,

for each permutation β ∈ B we obtain the kernel Ft,β . Then,

for each obtained Ft,β we try to increase PDs. i.e. for each i,
where D∗[i] > Dβ [i], i ∈ [l], we add rows Ft,β [j], 0 ≤ j < i
to the row Ft,β [i] to obtain row M [i] with wH(Mi) = D∗[i],
where wH(c) = dH(c,0). In the next sections we show that

the set K can be significantly reduced.

2) The construction of 16 × 16 kernels: We illustrate the

proposed general algorithm by construction of the 16 × 16
polarization kernels. We are going to minimize the processing

complexity for kernels with D∗ = [1, 2∗4, 4∗4, 6∗2, 8∗4, 16].
Note that kernels with PDP D∗ has maximal rate of polariza-

tion among 16×16 kernels, while the permuted Arikan matrix

F4,β has MI-PDP Dβ = [1, 2∗4, 4∗6, 8∗4, 16].
This implies that we need to transform rows K4,β[9] and

K4,β[10] to rows M [i], i ∈ {9, 10} , with Di = 6. We also

assume that Di = wH(M [i]), i ∈ [l]. To reduce the size of

the set K of the candidate matrices M , we propose to obtain

these rows as a linear combination of rows F4,σ[i], i ∈ [5 : 11],
which have wH(F4,σ) = 4, where [a : b] denotes the set

{a, a+ 1, . . . , b− 1}. Note that this construction allows one

to keep unchanged rows F4,σ[i], i ∈ [32]\[5 : 11], which have

wH(F4,σ) 6= 4.

The constraints on the matrix M ∈ K are following:

• M [i] = F4,σ[i], i ∈ [16]\M1, where M1 = [5 : 11],
• M [9],M [10] ∈ {c ∈ 〈{F4,σ[i], i ∈ M1}〉|wH(c) = 6},

• M [i] ∈ {F4,σ[j], j ∈ M1}, where i ∈ [5 : 9].

It is easy to observe, that the proposed construction can pro-

duce kernels with partial distances distinct from D∗ and even

singular matrices. One should check the obtained matrices and

eliminate those with invalid PDP.

C. Enhanced construction algorithm

In this section we provide the modifications of the al-

gorithm, presented in III-B, and illustrate it by construc-

tion of 32 × 32 kernels. The maximal rate of polarization

among kernels of size 32 is 0.53656, which is achieved by

kernels with PDP D∗ = [1, 2∗5, 4∗5, 6∗5, 8∗5, 12∗5, 16∗5, 32],
while MI-PDP of permuted Arikan matrix F5,β is given by

Dβ = [1, 2∗5, 4∗10, 8∗10, 16∗5, 32]. It means that one should

transform F5,β to obtain matrices M with wH(M [i]) = D[i] =
6, i ∈ [11 : 16] and D[i] = wH(M [i]) = 12, i ∈ [21 : 26].

To reduce the search space, we propose to obtain rows of

weight 6 and 12 as linear combination of rows with weight 4

and 8 respectively. We start minimization process considering

the set K of matrices M with following constraints:

• M [i] = F5,σ[i], i ∈ [31]\M2, M2 = [16 : 26],

• M [i] ∈ {c ∈ C|dH(c,0) = 12}, where

C = 〈{F5,σ[j], j ∈ M2}〉 and i ∈ [21 : 26],
• M [i] ∈ {F5,σ[j], j ∈ M2} , i ∈ [16 : 21].

After that, one can consider similarly constructed set of

matrices with rows of the Hamming weight 6.

One can further reduce the size of the set K. For each

codeword c ∈ C, we can compute v = cF5 and obtain

the position t(v) = j of the last non-zero element in

v. We can construct the disjoint sets of codewords Cj =
{c ∈ C|τ(cF5) = j, dH(c,0) = 12} and consider matrices M
with rows M [i], i ∈ [21 : 26], from different Cj . This allows

one to exclude the matrices M , which correspond to addition

of row F5,β [i] to row F5,β [j] with i > j, which does not

change the rate of polarization and scaling exponent.

Moreover one can pick only unique combinations of

M [i], i ∈ M2. For each combination, one should obtain the

transition matrix T and sort two block of τi: i ∈ [16 : 21] and

i ∈ [21 : 26] to minimize the processing complexity.

The same procedure can also be done for rows [6 : 16]
independently from rows [16 : 26].

IV. NUMERIC RESULTS

A. Monotonic partial distances

1) Construction of 16 × 16 kernels: We constructed the

set of 16 × 16 matrices by procedure, described in section

III-B2 and picked the set K∗ of polarization kernels K with

E(K) = 0.51828. For each K ∈ K∗ we compute complexity

Ψ(K) and BEC scaling exponent µ(K) (section II-B2).

As a result, we minimized the processing complexity among

kernels with the lowest scaling exponent and found a kernel

K1, which has µ(K) = 3.346, maximal size of the decoding

window M(K1) = 4 and processing complexity Ψ(K1) =
740. This kernel is presented on Figure 1.

It turns out, that the complexity of window processing

can be significantly reduced by employing modified window

processing algorithm [6], [7]. For instance, the kernel K1 was

reported in [6] to have processing complexity of 472 arithmetic

operations instead of estimated 740 operations.

2) Construction of 32×32 kernels: We found a kernel K32,

illustrated on Figure 1, by enhanced construction algorithm,

proposed in section III-C. The K32 kernel has E(K32) =
0.53656 and µ(K32) = 3.127. This BEC scaling exponent is

minimal for 32× 32 polarization kernels at present [10]. The

K32 has the maximal size of the decoding window M(K32) =
14 and processing complexity Ψ(K32) = 472247 arithmetical

operations, which is unfortunately too high for practical use.

B. Permuted partial distances

As we have seen in the previous section, the kernels with

MI-PDs can have too high processing complexity. To cope

with it, we propose to apply row permutations over rows of

K , which reduce decoding windows, while preserving PDP.

K1, E = 0.51828, µ = 3.346


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




K2, E = 0.51828, µ = 3.45


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




K32, E = 0.53656, µ = 3.127


1 0
1 1 0
1 0 1 0
1 0 0 0 1 0
1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 1 0 1 1 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 1 1 1 0 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0
1 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0
0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1




Fig. 1: Constructed polarization kernels

1) Row permuted 16×16 kernel: We performed a heuristic

minimization of M(K1) by permutation of rows of K1,

while preserving the polarization rate E = 0.51828. The

search resulted in the kernel K2, illustrated in Figure 1, with

E(K2) = 0.51828, µ(K) = 3.45 and M(K) = 3.

The kernel K2 is given by PρK1, where

Pρ is a permutation matrix, where ρ =
[0, 1, 2, 7, 3, 4, 5, 6, 9, 10, 11, 12, 8, 13, 14, 15]. It was shown in

[6] that the kernel K2 can be processed with 183 operations

instead of 293 operations of a straightforward implementation.

2) Row permuted 32×32 kernel: In contrast to the kernels

of the size 16, we were not able to reduce M(K32) and

preserve its polarization rate by row permutations. Then we

decided to decrease the required rate of polarization to reduce

maximal size of the decoding window.

As a result, we obtained a kernel K3 with E(K3) =
0.529248 and µ(K3) = 3.207. The complexity of K3 is given

by Ψ(K3) = 13885 operations and M(K3) = 8. Moreover,

the kernel K3 can be processed by reduced complexity win-

dow processing algorithm [7] with 6770 operations.

The kernel K3 is given by PρK32, where Pρ

is a permutation matrix, ρ(i) = ρ̄(i), i ∈ [18],
ρ̄ = [0, 1, 2, 12, 3, 11, 4, 6, 15, 5, 7, 8, 14, 13, 16, 9, 17, 10]
and ρ(i) = i, i ∈ [18 : 32].

C. Performance of polar codes with the constructed kernels

We constructed (4096, 2048) polar codes with kernels K1

and K2. We also constructed (1024, 512) polar code with

kernel K3. The performance was investigated for the case of

AWGN channel with BPSK modulation. The set of frozen

symbols was obtained by the method, proposed in [16].

Figure 2a presents simulation results for (4096, 2048) polar

subcodes [17],[18] with different kernels under SCL with

different list size at Eb/N0 = 1.25 dB. The results are

presented in terms of the actual decoding complexity. It can

be seen that the polar subcode based on kernel K2 can

provide better performance with the same decoding complexity

for FER ≤ 8 · 10−3 compared to polar subcodes with F1

kernel. Unfortunately, K1 kernel, which provides lower scaling

10
−3

10
−2

10
−1

 100000 1x10
6

 1x10
7

F
E

R

Number of arithmetic operations

F1 E = 0.5, µ=3.627
K1 E = 0.51828, µ=3.346
K2 E = 0.51828, µ=3.450

(a) (4096, 2048) codes

10
−5

10
−4

10
−3

10
−2

 100000 1x10
6

 1x10
7

F
E

R

Number of arithmetic operations

F1 E = 0.5, µ=3.627
K3 E = 0.529, µ=3.207

(b) (1025, 512) codes

Fig. 2: SCL decoding of polar subcodes

exponent, has greater processing complexity than K2, so that

its curve intersects the one for the F1 only at FER= 2 · 10−3.

The same simulations were done for (1024, 512) codes with

32 × 32 kernel K3 and SNR = 1.75 dB. The corresponding

results are shown in figure 2b. Due to high processing com-

plexity of K3 only for FER less than 2.5·10−5 the overall SCL

decoding complexity of the polar code with K3 has become

lower compared to the polar code with Arikan kernel.

REFERENCES

[1] A. Fazeli, S. H. Hassani, M. Mondelli, and A. Vardy, “Binary linear
codes with optimal scaling: Polar codes with large kernels,” in Proceed-

ings of IEEE Information Theory Workshop, 2018.
[2] S. B. Korada, E. Sasoglu, and R. Urbanke, “Polar codes: Characteri-

zation of exponent, bounds, and constructions,” IEEE Transactions on

Information Theory, vol. 56, no. 12, pp. 6253–6264, December 2010.
[3] A. Fazeli and A. Vardy, “On the scaling exponent of binary polariza-

tion kernels,” in Proceedings of 52nd Annual Allerton Conference on

Communication, Control and Computing, 2014, pp. 797 – 804.
[4] N. Presman, O. Shapira, S. Litsyn, T. Etzion, and A. Vardy, “Binary

polarization kernels from code decompositions,” IEEE Transactions On

Information Theory, vol. 61, no. 5, May 2015.
[5] S. Buzaglo, A. Fazeli, P. H. Siegel, V. Taranalli, and A. Vardy, “On

efficient decoding of polar codes with large kernels,” in Proceedings of

IEEE WCNCW, March 2017, pp. 1–6.
[6] G. Trofimiuk and P. Trifonov, “Efficient decoding of polar codes with

some 16 × 16 kernels,” in Proceedings of IEEE ITW, 2018.
[7] G. Trofimiuk and P. Trifonov, “Reduced complexity window processing

of binary polarization kernels,” in Proceedings of IEEE ISIT, 2019.
[8] H. Griesser and V. R. Sidorenko, “A posteriory probability decoding

of nonsystematically encoded block codes,” Problems of Information

Transmission, vol. 38, no. 3, 2002.
[9] S. H. Hassani, K. Alishahi, and R. Urbanke, “Finite-length scaling for

polar codes,” IEEE Trans. On Inf. Theory, vol. 60, no. 10, October 2014.
[10] H. Yao, A. Fazeli, and A. Vardy, “Explicit polar codes with small scaling

exponent,” in Proceedings of IEEE ISIT, Paris, France, July 2019.
[11] V. Miloslavskaya and P. Trifonov, “Sequential decoding of polar codes

with arbitrary binary kernel,” in Proceedings of IEEE Information

Theory Workshop. Hobart, Australia: IEEE, 2014, pp. 377–381.
[12] ——, “Sequential decoding of polar codes,” IEEE Communications

Letters, vol. 18, no. 7, pp. 1127–1130, 2014.
[13] P. Trifonov, “A score function for sequential decoding of polar codes,”

in Proceedings of IEEE ISIT, Vail, USA, 2018.
[14] ——, “Binary successive cancellation decoding of polar codes with

Reed-Solomon kernel,” in Proceedings of IEEE ISIT. Honolulu, USA:
IEEE, 2014, pp. 2972 – 2976.

[15] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Transactions

On Information Theory, vol. 61, no. 5, pp. 2213–2226, May 2015.
[16] P. Trifonov, “On construction of polar subcodes with large kernels,” in

Proceedings of IEEE ISIT, 2019.
[17] P. Trifonov and G. Trofimiuk, “A randomized construction of polar

subcodes,” in Proceedings of IEEE ISIT, 2017.
[18] P. Trifonov, “Design of randomized polar subcodes with non-arikan

kernels,” in Proceedings of 16-th International Workshop on Algebraic

and Combinatorial Coding Theory, 2018.

