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Abstract—An approximate method for evaluation of the re-

liability of the symbol subchannels induced by a polarizing

transformation with non-binary kernels is proposed. We show

that if polar codes are combined with the channel adapter, the

capacities of the subchannels can be estimated recursively.

Index Terms—Polar codes, non-binary kernels, channel

adapter.

I. INTRODUCTION

Polar codes are linear block codes, which achieve symmetric

capacity of memoryless channels and have low encoding and

decoding complexity [1]. Classical polar codes are based on

the 2 × 2 matrix

(

1 0
1 1

)

and can be constructed by several

methods, in particular, by binary erasure channel recursion

[1], degrading and upgrading transformations [2], Gaussian ap-

proximation [3], as well as the Monte-Carlo method. However,

the rate of polarization of the Arikan kernel is quite low, which

results in poor finite-length performance of the corresponding

polar codes.

Much higher rate of polarization can be obtained by em-

ploying large kernels [4], [5]. Rate of polarization provided

by non-binary kernels (e.g. Reed-Solomon) far exceeds that of

binary kernels with similar dimension. Reed-Solomon kernel

was also shown to provide optimal scaling exponent [5].

To the best of our knowledge, only the erasure channel

recursion [6] and Monte-Carlo code construction methods [1]

are currently available for the case of large non-binary kernels.

However, the erasure channel recursion is quite inaccurate for

generic channels, while the Monte-Carlo method is very time

consuming.

A generalization of the Gaussian approximation method to

the case of binary large kernels was suggested in [7]. It relies

on construction of histograms of the LLRs produced by a

kernel processor to obtain a family of curves, which relate

the capacity of the underlying channel with the capacities of

the subchannels induced by a kernel. Construction of such

histograms is almost infeasible for the case of non-binary

kernels. In this paper we present an alternative approach to

construction of such curves, extending therefore the Gaussian

approximation method to the case of large non-binary kernels.

II. BACKGROUND

Let us consider an l × l non-singular matrix K over Fq,

q = pt > 2, such Fp(K) = Fq for any standard form K of
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K , where Fp(K) is the field extension of Fp generated by the

adjunction of all elements of K . It is possible to show that

such matrix polarizes any q-ary memoryless source and q-ary

input memoryless output-symmetric channel [5].

Reed-Solomon kernel is given by matrix K with elements

Kij = αl−i−1
j , where 0 ≤ i, j < l, αj are some distinct

elements of Fq , and l ≤ q is kernel dimension. Hence, the

last k rows of K represent a generator matrix of an (l, k) RS

code.

Rate of polarization of the RS kernel is given by E(l) =
log(l!)/(l log(l)), which is the highest possible value for a

given l ≤ q. For example, for l = 4 and l = 8 the Reed-

Solomon kernels provide rate of polarization E(4) ≈ 0.57312
and E(8) ≈ 0.63747 respectively, which is much higher

compared to 0.5, rate of polarization of the Arikan kernel.

Recall that binary kernels achieve E(l) > 0.5 only for l ≥ 16.

An (n = lm, k) non-binary polar code is a code generated

by k rows of matrix Gm = Bl,mK⊗m, where ui = 0, i ∈ F ,

F ⊂ {0, . . . , n − 1} is a set of indices of frozen symbols,

|F| = n−k, and Bl,m is the digit-reversal permutation matrix,

which provides the mapping

π
(

m−1
∑

i=0

jil
i
)

=

m−1
∑

i=0

jil
m−1−i, 0 ≤ ji < l.

Let us consider a q-ary input memoryless output-symmetric

channel with transition probability function W
(0)
0 (y|c) =

W (y|c), c ∈ Fq . We consider here the case of q = 2t.
The subchannels induced by the polarizing transformation

Gm with the kernel K are given by

W (i)
m (yn−1

0 , ui−1
0 |ui) =

1

qn−1

∑

u
n−1

i+1
∈F

n−i−1
q

n−1
∏

j=0

W
(0)
0 (yj |(u

n−1
0 Gm)j), 0 ≤ i < n.

It is convenient to define probabilities

W
(lj+i)
λ (ulj+i

0 |yn
′
−1

0 ) =

∑

u
lj+l−1

lj+i+1

l−1
∏

s=0

W
(j)
λ−1

(

(ult+l−1
lt K)s, 0 ≤ t ≤ j|y

n′

l
s+n′

l
−1

n′

l
s

)

, (1)

where n′ = lλ. These probabilities can be computed as

described in [8].

The successive cancellation algorithm can be used to decode

polar codes. This method makes decisions

ûi =

{

argmaxui∈Fq
W

(i)
m (ûi−1

0 , ui|y
n−1
0 ), i /∈ F

the frozen value of ui i ∈ F
.
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Fig. 1: BI-AWGN channel with binary image mapper and

channel adapter

III. THE CAPACITY OF SUBCHANNELS

The reliability of subchannels W
(i)
m (Y n−1

0 , U i−1
0 |Ui)

can be characterized by their mutual information

I
(i)
m (Y n−1

0 , U i−1
0 ;Ui), where Y n−1

0 is a random vector

corresponding to channel output, and U i
0 is a random vector

corresponding to information symbols. From the definition of

mutual information, we obtain

I(i)m (Y n−1
0 , U i−1

0 ;Ui) = H(Ui)−H(Ui|Y
n−1
0 , U i−1

0 )

= −
∑

a∈Fq

p(Ui = a) log2
(

p(Ui = a)
)

+
∑

Ui
0
∈F

i+1
q

∫

Y n−1

0
∈Rn

W (i)
m (Y n−1

0 , U i
0) (2)

× log2
(

W (i)
m (Ui|Y

n−1
0 , U i−1

0 )
)

dY.

The complexity of computing this expression grows exponen-

tially with i. For the case of the Arikan kernel, these computa-

tions can be approximated with polynomial complexity by em-

ploying channel degrading and upgrading transformations [2].

This approach was generalized in [9] to the case of non-binary

codes with 2×2 Arikan-like kernel. However, to the best of our

knowledge, no techniques for computing I
(i)
m (Y n−1

0 , U i−1
0 ;Ui)

are available for larger non-binary kernels.

We consider transmission of binary images of codeword

symbols over BI-AWGN channel. That is, given xj =
∑t−1

i=0 xj,iα
i, where α is a primitive element of F2t , symbols

xj,0, ..., xj,t−1 ∈ F2 are transmitted. However, this results in

a non-uniform distribution of errors in the symbols of the

non-binary codeword, while the actual errors in the subchan-

nels in W
(i)
m are approximately equiprobable. We propose

to overcome this problem by employing a channel adapter,

similarly to [10]. Fig. 1 illustrates the proposed transmission

scheme. The channel adapter multiplies codeword symbols

by independent random values βj uniformly distributed over

F2t \ {0}, which are known to the receiver.

To obtain a simple method for construction of non-binary

polar codes, we propose to assume that the subchannels W
(i)
m

behave in a way similar to a binary-input AWGN channel

combined with a binary image transmitter and appropriate

channel adapter. That is, we assume that the symbols xj to be

transmitted over these subchannels are multiplied by random

non-zero values βj ∈ F2t , known to the receiver1, the value

βjxj is transformed into its binary image, and the obtained t
bits are transmitted over BI-AWGN channel.

This assumption implies that the capacity of subchannel

W
(i)
m induced by m-layered polarizing transformation and

1In general, one should use a random bijective mapping Fq → Fq as a
channel adapter. However, we have found that multiplication by random non-
zero values already provides quite good results.
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Fig. 2: Subchannel capacity functions

some q-ary input memoryless output symmetric channel W
depends only on m, i, the kernel being used, and the capacity

C = I(W ) of W . This enables one to approximately evaluate

the capacities of the subchannels as [7]

I(li+j)
m (C) ≈ IK,j(I

(i)
m−1(C)), 0 ≤ j < l, (3)

where I
(0)
0 = C, and IK,j(C) are a family of kernel-specific

functions, which give the capacity of W
(j)
1 , provided that the

underlying channel has capacity C.

Hence, the proposed code construction method involves the

following steps:

1) (one-time preprocessing): Obtain functions IK,j(C), 0 ≤
j < l for a given kernel K and various values of C.

2) Compute the capacity C = I(W ) of the underlying

channel W.
3) Compute recursively the capacities of the subchannels

via (3).

4) Let F be given by n− k indices i of subchannels with

the smallest values of I
(i)
m .

IV. COMPUTING CAPACITY FUNCTIONS

It was suggested in [7] for the case of q = 2 to ob-

tain functions IK,j(C) from the histograms of output val-

ues of a kernel processor, i.e. the device, which computes
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W
(lj+i)
λ (ulj+i

0 |yn
′
−1

0 ), their approximations or the correspond-

ing LLRs. While it may be possible to extend this approach

to the non-binary case, as described in [11], [12], [13], the

number of entries in such histograms, i.e. the complexity of

their construction, grows exponentially with q. Hence, this

approach is not feasible in practice for q > 3.

It was shown in [14] that one can avoid construction of

multi-dimensional histograms by performing a Monte-Carlo

simulation of an algorithm for evaluation of the associated

symbol probabilities (W
(i)
m (Y n−1

0 , U i−1
0 |Ui) in the considered

case), computing their entropies, and averaging them over

sufficiently many channel output instances, i.e.

IK,j(C) ≈
1

T

T
∑

s=1

ÎK,j(Y
l−1
0,s , U i−1

0,s ;Ui), (4)

where the subscript s denotes the s-th realization of the

corresponding random variable, T is the number of samples,

and ÎK,j(Y
l−1
0,s , U i−1

0,s ;Ui) denotes an estimate of the capacity

of the corresponding subchannel, obtained from the values

W
(j)
1 (Ui = ui|Y

l−1
0,s , U i−1

0,s ), ui ∈ F2t , which is given by

ÎK,j(Y
l−1
0,s , U i−1

0,s ;Ui) = t+
∑

a∈F
2t

w(a) log2
(

w(a)
)

,

where w(a) = W
(i)
1 (Ui = a|Y l−1

0,s , U i−1
0,s ), and Ui is a random

variable corresponding to the i-th kernel input symbol. In other

words, ÎK,j(Y
l−1
0,s , U i−1

0,s ;Ui) can be computed by (2) for m =

1 given Y l−1
0,s , the s-th realization of Y l−1

0 . It was shown in

[14] that for sufficiently large T such estimates converge to the

true values of the corresponding mutual information functions.

The complexity of construction of the tables, which ap-

proximate functions IK,j(C), is O(T lCp), where Cp is the

complexity of single evaluation of (1). The complexity of code

construction with the proposed method is O(n) evaluations of

IK,j(C), i.e. interpolation over the pre-computed tables. Ob-

serve that the complexity of the Monte-Carlo code construction

method is O(Tn logq(n)Cp).
The proposed code construction method reduces to one-

time construction of tables, which is implemented by applying

the SC decoder to a code consisting of a single instance

of the polarization kernel, while the classical Monte-Carlo

method requires one to run the SC decoder for a multi-layered

polarizing transformation for every value of channel SNR and

code length.

V. NUMERIC RESULTS

In our simulations we consider transmission of the binary

image of the codewords of polar codes with Reed-Solomon

kernels over BI-AWGN channel. Both the cases of channel

adapter with random βj (i.e. with channel adapter (CA), see

Fig. 1), and βj = 1 (i.e. without channel adapter), were

considered.

Fig. 2 illustrates the subchannel capacity functions IK,i(C)
for Reed-Solomon kernels over F4 and over F8 for AWGN

channel (dashed lines) and the q-ary erasure channel (QEC)

(solid lines). It can be seen that in the case of F4 the functions

obtained for AWGN channel with channel adapter are very
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Fig. 3: Accuracy of the proposed method of subchannel

reliability estimation

close to those obtained for QEC. This means that the capacity

function for QEC can be reliably used to obtain codes for

AWGN channel. However, this is clearly not the case for codes

over F8. Observe also, that the curves obtained for AWGN

channel with and without channel adapter are quite different.

This is due to highly non-uniform distribution of errors at the

output of the BI-AWGN channel without the channel adapter.

The kernel capacity functions shown in Fig. 2 were used

to estimate the capacities of bit subchannels of the polarizing

transformations via the recursive function (3). Fig. 3 presents

the Monte-Carlo simulated I
(i)
m for each subchannel vs the

estimated values of I
(i)
m for the case of transmission of the

binary image of the output of the polarizing transformation

over the AWGN channel at Es/N0 = −1 dB with genie-aided

SC decoder. It can be seen that the kernel capacity functions

obtained with CA enable one to order the subchannels W
(i)
m

more accurately according to their reliability, compared to

the case of the scheme without CA That is, the Monte-

Carlo simulated I
(i)
m approximately monotonically increase

with I
(i)
m in the case of the scheme with CA. This means that

the proposed approach can be used to order bit subchannels

according to their reliability. On the other hand, the results

obtained for the scheme without CA are quite chaotic.

Fig. 4–5 present the performance of polar codes with 8× 8
and 4 × 4 RS kernels constructed for Es/N0 = −1 dB

by Monte-Carlo simulations and by the proposed recursive

approximation (3). It can be seen that employing the channel

adapter enables one to obtain better performance. The pro-

posed approximation method together with the channel adapter

enables one to obtain codes with almost the same performance

as in the case of subchannel reliabilities obtained via Monte-

Carlo simulations.
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Fig. 4: Performance of (45, 512) polar codes
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Fig. 5: Performance of (83, 256) polar codes

Furthermore, Fig. 4–5 illustrate the performance of codes

constructed for QEC with the same capacity as in the above

case. Simulations were done with channel adapter, unless

stated otherwise. It can be seen that channel adapter is essential

for obtaining good performance. In the case of F4, the code ob-

tained for QEC provides approximately the same performance

as the one obtained via the proposed approximation method.

This is due to capacity functions shown in Fig. 2a for the case

of QEC and BI-AWGN channel with channel adapter being

approximately equal. However, in the case of F8 there is a non-

negligible performance gap between the codes obtained for the

QEC and BI-AWGN channel with CA. The code obtained with

the proposed method provides better performance compared to

the one constructed for QEC.

Table I shows the number of frozen positions in which the

codes constructed for QEC recursion and by the proposed

method differ from codes constructed by Monte-Carlo method.

It can be seen that introducing of channel adapter makes

the constructed code to be closer to the code constructed

by Monte-Carlo method. Furthermore, in the case of F4 the

number of inconsistencies in frozen sets for both methods

TABLE I: Comparison of codes constructed by Monte-Carlo

method, QEC recursion and proposed approximate method

Constructed code RS kernel Channel adapter Proposed QEC

(45, 512) K4×4 yes 2 2
(45, 512) K4×4 no 20 38
(83, 256) K8×8 yes 4 6
(83, 256) K8×8 no 8 10

corresponding to the last two columns is the same. Increasing

the kernel size results in more inconsistencies between the

codes. This explains the performance gap between the codes

obtained for the QEC and BI-AWGN channel (see Fig. 5).

VI. CONCLUSIONS

A novel method for construction of polar codes with non-

binary kernels was presented.

It relies on a family of functions for computing capacities

of the subchannels induced by a single instance of the kernel,

which are recursively used for computing the capacities of

subchannels induced by the polarizing transformation based

on such kernel. Furthermore, it was shown that employing

the channel adapter enables one to obtain better performance

compared to the case of straightforward transmission of a

binary image of polar code.
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