
Binary Successive Cancellation Decoding of Polar

Codes with Reed-Solomon Kernel

Peter Trifonov

Distributed Computing and Networking Department

Saint-Petersburg State Polytechnical University

Email: petert@dcn.icc.spbstu.ru

Abstract—Reduced complexity implementation of the succes-
sive cancellation decoding algorithm for polar codes with Reed-
Solomon kernel is presented. The proposed approach is based on
the representation of Reed-Solomon codes as Arikan polar codes
over F2m with dynamic frozen symbols, and application of list
successive cancellation decoding algorithm.

I. INTRODUCTION

Polar codes were recently shown to be able to achieve

the capacity of a wide class of communication channels [1].

However, the original Arikan kernel polarizes the channel quite

slowly. This causes short polar codes to perform quite poorly.

It was shown in [2], [3] that much higher rate of polarization

can be achieved by employing Reed-Solomon kernel instead

of Arikan one. However, implementation of a successive

cancellation (SC) decoding algorithm for such codes involves

soft-input soft-output decoding of Reed-Solomon codes, which

is prohibitively complex even for shortest codes.

In this paper we present a reduced-complexity implemen-

tation of SC decoding algorithm for polar codes with Reed-

Solomon kernel. The proposed approach is based on a repre-

sentation of Reed-Solomon component codes as Arikan polar

codes with dynamic frozen symbols, and their list successive

cancellation decoding.

The paper is organized as follows. Section II introduces the

necessary background. The proposed algorithm is derived in

Section III. Numeric results are given in Section IV.

II. BACKGROUND

A. Arikan polar codes

Consider a linear transformation F
2m

2 → F
2m

2 given by

matrix A = B
(2)
m G⊗m

2 , where B
(2)
m is a bit-reversal permu-

tation matrix, G2 =

(
1 0
1 1

)

and G⊗m
2 denotes m-times

Kronecker product of matrix G2 with itself. It was shown in

[1] that such transformation allows one to split a memoryless

binary-input output symmetric channel W (y|x) into n = 2m

subchannels W (yn−1
0 , ui−1

0 |ui) with capacities converging to

0 and 1. This enables one to construct polar code as a set of

vectors c = un−1
0 A, where ui = 0, i ∈ F , F is the set of low-

capacity subchannels, which are ”frozen”, and the remaining

ui are given by the payload data symbols being encoded.

The successive cancellation decoding algorithm computes

W (yn−1
0 , ui−1

0 |ui) = W
(i)
n (ui0|y

n−1
0)

W (yn−1

0
)

P{ui}
, and makes de-

cisions on non-frozen symbols ui, i /∈ F . These decisions are

used instead of true values of ui at the subsequent steps of

the algorithm for computingW (yn−1
0 , ui−1

0 |ui). This approach

does not provide any way to correct erroneous estimates of ui,
causing thus the successive cancellation decoder to be highly

suboptimal for moderate-length codes.

This problem was addressed in [4], where it was suggested

to track at most L paths ui−1
0 . For each i /∈ F each path splits

into two paths ui0, ui ∈ {0, 1} . If the number of obtained paths

exceeds L, the paths with lowest values of W
(i)
n (ui0|y

n−1
0) are

killed, where

W (2i)
n (u2i0 |y

n−1
0) =

1∑

u2i+1=0

W
(i)
n
2

(u2i+1
0,e ⊕ u

2i+1
0,o |y

n
2
−1

0)·

W
(i)
n
2

(u2i+1
0,o |y

n−1
n
2

)

(1)

W (2i+1)
n (u2i+1

0 |yn−1
0) =W

(i)
n
2

(u2i+1
0,e ⊕ u

2i+1
0,o |y

n
2
−1

0)·

W
(i)
n
2

(u2i+1
0,o |y

n−1
n
2

),
(2)

W
(0)
1 (x|y) = W (x|y), u2i+1

0,e and u2i+1
0,o denote subvectors

of u2i+1
0 with even and odd indices, respectively. List SC

decoding with sufficiently large L enables one to achieve near-

ML decoding performance.

It was suggested in [5] to represent an arbitrary binary linear

block code of length n with parity check matrix H as a polar

code with dynamic frozen symbols, so that uAHT = 0, and

uji =
∑

s<ji

Vi,sus, 0 ≤ i < n− k, (3)

where V = QHAT is a matrix, such that at most one row

ends1 in each column, Q is an invertible matrix, ji is the

column in which the i-th row ends, and F = {j0, . . . , jn−k−1}
is a set of dynamic frozen symbols, which depend on the code

being considered. This enables one to employ (list) successive

cancellation decoding algorithm for an arbitrary code. The set

of dynamic frozen symbols, however, may include many good

subchannels, while bad subchannels may remain unfrozen.

Therefore quite large list size may be needed in order to

achieve good performance.

Observe that this representation corresponds to the encoding

scheme given by c = fPB
(2)
m G⊗m

2 , where f is the message

vector, and P is a k × n matrix, such that PV T = 0.

1Row i ends in column ji iff Vi,ji 6= 0, and for all t > ji Vi,t = 0.

B. Reed-Solomon kernel

It was shown in [2] that if the input alphabet of a channel is

Fq, matrix Gq is not diagonal, and for each i there exists j < i,
such that (Gq)i,j is a primitive element2, then the capacities

of the symbol subchannels induced by transformation c =

fB
(q)
m G⊗m

q converge to 0 or 1 q-ary symbols per channel use,

where B
(q)
m is a permutation matrix corresponding to reversal

of the digits of q-ary integers. Matrix Gq can be constructed so

that its submatrices are generator matrices of nested extended

Reed-Solomon codes, e.g.

Gq =

1 1 . . . 1 1 αq−1
0

αq−2
q−1 αq−2

q−2 . . . αq−2
2 αq−2

1 αq−2
0

...
...

. . .
...

...
...

α1
q−1 α1

q−2 . . . α1
2 α1

1 α1
0

α0
q−1 α0

q−2 . . . α0
2 α0

1 α0
0

, (4)

where αi are distinct elements of Fq with α0 = 0.

Similarly to the case of binary Arikan codes, one can obtain

a polar code of length n = qm over Fq by freezing low-

capacity subchannels. The successive cancellation decoding

algorithm requires one in this case to compute

W̃ (qj+i)
n (f qj+i

0 |yn−1
0) =

∑

f
qj+q−1

qj+i+1
∈F

q−i−1
q

q−1
∏

s=0

W̃
(j)
n
q

((f qt+q−1
qt Gq)s, 0 ≤ t ≤ j|y

n
q
s+n

q
−1

n
q
s)

for fi ∈ Fq , where W̃
(0)
1 (x|y) = W (x|y). This can be

recognized as SISO decoding of a coset of the Reed-Solomon

code generated by rows i, . . . , q − 1 of kernel Gq . The

complexity of straightforward evaluation of this expression,

provided that W̃
(j)
n
q

(·) values are already available, is given

by O(qq−i). The objective of this paper is to provide more

efficient techniques for this problem in the case of q = 2m.

This problem was considered in [6], where it was suggested

to construct an extended trellis of the code, so that one can

employ standard APP decoding algorithms for computing the

required probabilities. However, this approach does not allow

one to reuse intermediate results for different i.

III. EFFICIENT DECODING OF POLAR CODES WITH

REED-SOLOMON KERNEL

A. Successive cancellation decoding of Reed-Solomon codes

(2m, k, q − k + 1) Reed-Solomon code over F2m , is

a set of vectors c obtained by evaluating f(x) =
∑k−1

i=0 f2m−1−ix
i, fi ∈ F2m , at distinct points x ∈ F2m . Let

a0, . . . , am−1 be a basis of F2m . Then x =
∑m−1

s=0 xsas, xi ∈
F2. Hence, one obtains

f(x) = f(x0, . . . , xm−1) =

k−1∑

i=0

f2m−1−i

∑

t∈Ci

pi,t

m−1∏

j=0

x
tj
j ,

(5)

2This requirement is in fact not necessary.

where pi,t ∈ F2m are the coefficients of the expansion of

(
∑m−1

s=0 xsas)
i, and Ci is the set of multi-degrees t ∈ {0, 1}

m

of non-zero terms in this expansion. This corresponds to the

encoding scheme c = f2m−1
0 PA, where P is a q × q matrix

consisting of pi,t values, and fi = 0, i < 2m − k. Observe

that matrix A can be seen as a table of values of various

monomials
∏m−1

j=0 x
tj
j , and matrix P is invertible. Expression

(5) can be considered as a generalized Zhegalkin polynomial

f : Fm
2 → F2m .

On the other hand, one can take check matrix of the Reed-

Solomon code, and obtain its representation as an Arikan

polar code with dynamic frozen symbols, where the dynamic

freezing constraints are given by (3), and PV T = 0. This

enables one to employ the successive cancellation algorithm

for decoding of Reed-Solomon codes. However, (1) should be

replaced with

W (2i)
n (u2i0 |y

n−1
0) =

∑

u2i+1∈F2m

W
(i)
n
2

(u2i+1
0,e ⊕ u

2i+1
0,o |y

n
2
−1

0)·

W
(i)
n
2

(u2i+1
0,o |y

n−1
n
2

)

(6)

This expression can be recognized as m-dimensional 2-point

cyclic convolution. Fast Hadamard transform can be used

to evaluate it with complexity O(m2m) [7]. However, the

performance of the classical successive cancellation decoding

algorithm appears to be unsatisfactory in this case. It can be

improved by employing list successive cancellation decoding

algorithm presented in [4], subject to the following changes:

• At phases φ corresponding to non-frozen symbols uφ,

where u2
m−1

0 = f2m−1
0 P , each path expands into q

branches corresponding to different values of fφ.

• Expression (3) is used for continuation of paths at phases

corresponding to frozen symbols uφ
• Path probabilities are computed according to (6) and (2).

Example 1. Consider (4, 2, 3) Reed-Solomon code over F22 .

Its codewords correspond to evaluation of polynomials f(x) =
f3+f2x = f3+f2(a0x0+a1x1), where (a0, a1) is a basis of

F22 . One obtains u3 = f3, u1 = f2a0 (non-frozen symbols),

and u2 = a1

a0
u1, u0 = 0 (frozen symbols).

B. Soft-output successive cancellation decoding

Let us consider for the sake of simplicity the case of succes-

sive cancellation decoding of a polar code over Fq with q× q
Reed-Solomon kernel Gq = PA and n = q = 2m, i.e. just a

single layer of polarizing transformation. The successive can-

cellation algorithm computes probabilities W̃
(i)
q (f i

0|y
q−1
0), and

makes decision on fi by setting it to the value corresponding

to the highest probability. Observe that this essentially reduces

to SISO decoding of a Reed-Solomon code. The successive

cancellation decoding algorithm for the case of Reed-Solomon

codes computes the probabilities of various paths uj0, such that

uq−1
0 A = f q−1

0 PA, i.e. f q−1
0 = uq−1

0 P−1. Observe that it is

possible to reconstruct f i
0 from uτi0 , where τi is the position

of the last non-zero symbol in the i-th row of P−1. However,

successive cancellation decoding of polar codes with RS kernel

requires one to compute W̃
(i)
q (f i

0|y
q−1
0), fi ∈ Fq. Fixing the

values f i−1
0 may impose constraints on uj, j > τi, which must

be taken into account while computing these probabilities.

Indeed, vectors f q−1
0 and uq−1

0 satisfy the system of equa-

tions
(
S I

)

︸ ︷︷ ︸

Θ′

(
fq−1 . . . f1 f0 u0 u1 . . . uq−1

)T
= 0,

where q×q matrix S is obtained by transposing P and revers-

ing the order of columns in the obtained matrix. By applying

elementary row operations, matrix Θ′ can be transformed into

minimum-span form Θ, such that the i-th row starts in the

i-th column, and ends in column zi, where all zi are distinct,

and Θi,zi = 1. This enables one to obtain dynamic freezing

constraints in the form of

uji =

i∑

s=0

fsΘn−1−i,n−1−s +

ji−1
∑

t=0

utΘn−1−i,n+t, (7)

where ji = zn−1−i − n.

Hence, one obtains

W̃q(f
i
0|y

q−1
0) =

∑

uj∈Fq,j∈Ti

Wq(u
hi

0 |y
q−1
0), (8)

where summation is performed over vectors uhi

0 satisfying (7),

i.e.

hi = max
0≤i′≤i

ji′ ,

and Ti = {0, . . . , hi} \ {j0, . . . , ji} is the set of non-frozen

symbols of Arikan polarizing transformation. If this set is

empty, (8) is assumed to contain a single summand. The values

Wq(u
hi

0 |y
q−1
0) can be computed according to (6) and (2).

Observe that the proposed approach reduces to computing

the probabilities of a number of paths uhi

0 . For each i fixing

a value of fi activates one more constraint (7), causing thus

some of these paths to be eliminated. Let σφ = i : ji = φ be

the smallest i, such that a constraint on uφ becomes active.

Example 2. Consider 4 × 4 Reed-Solomon kernel over F4

given by

G4 =

1 1 1 0
α α2 1 0
α2 α 1 0
1 1 1 1

.

It can be seen that

P = G4A
−1 =

1 1 1 0
0 1 α2 0
0 1 a 0
0 0 0 1

.

Therefore,

1 0 0 0 0 0 0 1
0 1 1 1 0 1 0 0
0 0 1 α2 0 α 1 0
0 0 0 1 1 0 0 0

f3
...

f0
u0
...

u3

= 0,

i.e. h30 = (0, 2, 2, 3), σ3
0 = (0, 2, 1, 3), and

W̃
(0)
4 (f0|y

3
0) =W

(0)
4 (f0|y

3
0),

W̃
(1)
4 (f1

0 |y
3
0) =

∑

u1∈F4

W
(2)
4 (f0, u1, f1 + α2f0 + αu1|y

3
0),

W̃
(2)
4 (f2

0 |y
3
0) =W

(2)
4 (f0, f2 + f1 + f0, f0 + α2f1 + αf2|y

3
0),

W̃
(3)
4 (f3

0 |y
3
0) =W

(3)
4 (f0, f2+f1+f0, f0+α

2f1+αf2, f3|y
3
0)

Computing W̃
(1)
4 (f1

0 |y
3
0) requires one to consider four paths

corresponding to different values of u1. As soon as f1 becomes

fixed, three of them (those with u2 not satisfying (7)) are

eliminated.

Observe that computing W̃
(0)
4 (f0|y

4
0) using code trellis

requires (4 − 1)42 = 48 multiply-add operations. The pro-

posed approach involves computing Hadamard transforms of

W (c|yi), 0 ≤ i < 4, c ∈ F4, componentwise multiplication

of the obtained 4-dimensional vectors, and computing inverse

Hadamard transform. Hence, the total cost is 5 · 8 = 40
additions and 12 multiplications. Complexity savings for the

remaining steps are even more significant.

In order to estimate the number L of paths uhi

0 needed to

obtain exact values of W̃
(i)
q (f i

0|y
q−1
0), fi ∈ Fq , observe that

computing it requires one to consider all paths uhi

0 satisfying

i constraints (7). Each path is assumed to be associated with

q distinct values of uhi
. Hence, the maximal number of such

paths is given by

L0 = max
0≤i<q

qhi−i (9)

C. Reducing list size

The number of paths L0 needed to obtain exact values

of W̃
(i)
q (f i

0|y
q−1
0), in general, increases exponentially with

kernel dimension q. In order to reduce the complexity, one

may consider L < L0 most probable paths. However, it may

happen that paths uhi

0 corresponding to the required values of

f i
0 are killed at some early stages of list successive cancellation

decoding algorithm. This may cause significant inaccuracies in

the obtained estimates of W̃q(f
i
0|y

q−1
0). In order to avoid this,

it is necessary to restart list successive cancellation decoding

algorithm as soon as one obtains ji < hi, provided that some

paths are killed earlier. This may increase the complexity

by a factor of σ < q, where σ is the number of times

the list successive cancellation decoder is restarted. Hence,

the complexity of the proposed algorithm for the case of

q × q Reed-Solomon kernel over Fq, q = 2m, is given by

O(σLq2 log2 q).
The details of the proposed approach are provided in

algorithms 1 – 3. These algorithms keep global variables

φ, activePath[l], Pl,i[β, x], Cl,i[β, j], 0 ≤ l < L, 0 ≤ i ≤
m, 0 ≤ β < 2m−i, x ∈ F2m , 0 ≤ j < 2, 0 ≤ φ < n,
which have similar meaning to those used in [4]. K is a

global variable which is equal to the last phase φ, where

a path was killed due to memory overflow. One should set

φ = 0,K = −1 for every new instance of received noisy vec-

tor (y0, . . . , yn−1). For the sake of simplicity, global variables

Algorithm 1: GetSymbolDistribution

Data: i, (y0, . . . , yn−1)

Result: W̃
(i)
n (f0, . . . , fi|y0, . . . , yn−1), fi ∈ F2µ

1 begin

2 if φ = 0 then

3 l← AssignInitialPath()

4 Pl,0[β, u]←W (u|yβ), u ∈ F2m , 0 ≤ b < n
5 K = −1
6 while φ ≤ hi do

7 RecursivelyCalcP(m,φ)
8 if σφ < i then

9 for l← 0 to L− 1 do

10 if activePath[l] then

11 ul,φ ←
∑σφ

s=0 Θn−1−σφ,n−1−sfs +
∑φ−1

t=0 Θn−1−σφ,n+tul,t
12 Pl,m[0, x]← 0, x ∈ F2m \ {ul,φ}
13 Cl,m[0, φ mod 2]← ul,φ
14 else

15 if φ < hi then

16 Q←
Sort([(Pl,m[0, x], l, x), l < L, x ∈ F2m])
cl ← |

{
(p, l′, u) ∈ QL−1

0 |l′ = l
}
|, l < L

17 for l ← 0 to L− 1 do

18 if cl = 0 ∧ activePath[l] then

19 KillPath(l)
20 K ← φ
21 for j ← 0 to |QL| − 1 do

22 l ← Q[j][1]
23 if cl > 1 then

24 l′ ← ClonePath(l)
25 Cl′,m[0, φ mod 2]← ul′,φ
26 ul′,φ ← Q[j][2]
27 Cl,m[0, φ mod 2]← ul,φ ← Q[j][2]
28 cl ← cl − 1
29 if (φ ≡ 1 mod 2) ∧ (φ < hi) then

30 RecursivelyUpdateC (m,φ)

31 φ← φ+ 1
32 Π← (0, . . . , 0)
33 for l← 0 to L− 1 do

34 if activePath[l] then

35 for ul,φ−1 ∈ F2m do

36 fi ←
1

Θn−1−i,n−1−i

(
∑ji

t=0 ul,tΘn−1−i,n+t +
∑i−1

s=0 fsΘn−1−i,n−1−s

)

37 Π[fi]← Π[fi] + Pl,m[0, uφ−1]
38 return Π

ul,φ are used in the description of the algorithms. However,

their values can be recovered from Cl,m[β, j]. Algorithm 2

makes use of fast Hadamard transform. The description of the

remaining auxiliary functions is presented in [4].

For each i one obtains W̃
(i)
n (f0, . . . , fi|y0, . . . , yn−1), fi ∈

F2µ by calling GetSymbolDistribution(i, (y0, . . . , yn−1).

Algorithm 2: SetValue

Data: i, x
1 begin

2 fi ← x
3 if ji ≤ K then

4 φ← 0
5 return

6 for l← 0 to L− 1 do

7 if activePath[l] then

8 ũl,ji ←
∑i

s=0 Θn−1−i,n−1−sfs +
∑ji−1

t=0 Θn−1−i,n+tul,t
9 if ji < φ− 1 then

10 if ũl,ji 6= ul,ji then

11 KillPath (l)
12 if ji = φ− 1 then

13 Pl,m[0, x]← 0, x ∈ F2m \ {ũl,ji}
14 Cl,m[0, i mod 2]← ul,ji ← ũl,ji
15 if φ− 1 ≡ 1 mod 2 then

16 RecursivelyUpdateC (m,φ− 1)

Algorithm 3: RecursivelyCalcP

Data: l, λ, φ
1 begin

2 if λ = 0 then

3 return

4 ψ ← ⌊φ/2⌋
5 if φ ≡ 0 mod 2 then

6 RecursivelyCalcP (λ− 1, ψ)

7 for l← 0 to L− 1 do

8 if activePath[l] then

9 for β = 0 to 2m−λ − 1 do

10 if φ ≡ 0 mod 2 then

11 p′ ← FHT(Pl,λ−1[2β, u], 0 ≤ u < 2m)
12 p′′ ← FHT(Pl,λ−1[2β + 1, u], 0 ≤ u <

2m)
13 for i← 0 to 2m − 1 do

14 pi ← p′ip
′′
i

15 Pl,λ[β, ·]←
1
2µFHT(p)

16 else

17 u′ ← Cl,λ[β, 0]
18 for u′′ ∈ F2m do

19 Pl,λ[β, u
′′]← Pl,λ−1[2β, u

′ ⊕
u′′]Pl,λ−1[2β + 1, u′′]

This call must be followed by a call to SetV alue(i, x), where

x is the (presumably) correct value of fi.

IV. NUMERIC RESULTS

Figure 1 presents the performance of polar codes with

Reed-Solomon kernel over Fq based on q × q kernel for

q ∈ {4, 8, 16}, as well as Arikan polar code, and Arikan polar

code concatenated with CRC [4]. For the case of polar codes

with Reed-Solomon kernel list decoding was employed only

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0 0.5 1 1.5 2 2.5 3

F
E

R

Eb/N0, dB

RS(4
5
=1024,512) over GF(2

2
), L=4

RS(16
2
=256,128) over GF(2

4
),L=4096

RS(8
3
=512,256) over GF(2

3
), L=128

Arikan(2048,1024) over GF(2), L=1
Arikan(2048,1024) over GF(2), L=32

Arikan-CRC(2048,1024) over GF(2), L=32

Fig. 1. Performance of polar codes

for computing probabilities W̃
(i)
ss (·), as described in Section

III-C, while classical successive cancellation decoding scheme

was used for making the decisions on information symbols

fi, 0 ≤ i < qm. For the case of codes based on Arikan kernel

list decoding was used to identify the most probable sequence

u2
m−1

0 . Simulations were performed for the case of BPSK

transmission of the binary image of the codes over AWGN

channel.

It can be seen that codes with Reed-Solomon kernel provide

significant performance gain compared to codes with Arikan

kernel. However, this requires employing list decoding with

very large list size in order to calculate the probabilities needed

by the successive cancellation decoding algorithm, except for

very small values of q. Furthermore, due to suboptimality

of the successive cancallation decoding method, Arikan polar

codes with outer CRC still outperform polar codes with Reed-

Solomon kernel. This problem can be avoided by employing

list decoding techniques not only for computing W̃
(i)
qs (·), but

also for finding the most probable values f qm−1
0 .

Figure 2 presents the performance of list successive can-

cellation decoding algorithm for the case of (16, 11, 6) Reed-

Solomon code over F24 , represented as an Arikan polar code

with dynamic frozen symbols. It can be seen that near-optimal

performance is achieved already with list size L = 16.

This implies that one can substantially reduce the decoding

complexity for polar codes with Reed-Solomon kernel by

employing ”hard-output” list successive cancellation decoding

of codes at the outer layer with small L. Soft-output successive

cancellation decoding, which requires large list size, needs to

be employed only at the internal layers of the Reed-Solomon

polarizing transformation.

V. CONCLUSIONS

In this paper an efficient algorithm for computing the

probabilities needed by the successive cancellation decoding

method for polar codes with Reed-Solomon kernel was pro-

posed. Although the complexity of the proposed algorithm is

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 1 2 3 4 5 6 7

F
E

R

Eb/N0, dB

L=1
L=2
L=4
L=8

L=16
L=32
L=64

Fig. 2. Performance of list successive cancellation decoding of (16, 11, 6)
Reed-Solomon code

still exponential in kernel dimension, it remains practical for

q = 4, and the rate of polarization provided by such kernel

E(G4) = 0.573 already exceeds that of rather large binary

kernels [8].

The approach proposed in this paper, which is based on the

representation of codes generated by kernel submatrices as

Arikan polar codes with dynamic frozen symbols, is a general

one, and can be extended to the case of other kernel types.

However, it becomes particularly efficient in the case of Reed-

Solomon kernel, since codes generated by submatrices of such

kernel are Reed-Solomon ones, and their codewords corre-

spond to generalized Zhegalkin polynomials of sufficiently low

degree.

ACKNOWLEDGEMENT

This work was supported by Russian Foundation for Basic

Research under grant 12-01-00365-a.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions On Information Theory, vol. 55, no. 7, pp. 3051–3073, July
2009.

[2] R. Mori and T. Tanaka, “Channel polarization on q-ary discrete memory-
less channels by arbitrary kernels,” in Proceedings of IEEE International
Symposium on Information Theory, 2010.

[3] ——, “Non-binary polar codes using Reed-Solomon codes and algebraic
geometry codes,” in Proceedings of IEEE Information Theory Workshop,
2010.

[4] I. Tal and A. Vardy, “List decoding of polar codes,” in Proceedings of

IEEE International Symposium on Information Theory, 2011.
[5] P. Trifonov and V. Miloslavskaya, “Polar codes with dynamic frozen

symbols and their decoding by directed search,” in Proceedings of IEEE

Information Theory Workshop, September 2013, pp. 1 – 5.
[6] H. Griesser and V. R. Sidorenko, “A posteriory probability decoding

of nonsystematically encoded block codes,” Problems of Information
Transmission, vol. 38, no. 3, 2002.

[7] D. Declercq and M. P. Fossorier, “Decoding algorithms for nonbinary
LDPC codes over GF (q),” IEEE Transactions On Communications,
vol. 55, no. 4, April 2007.

[8] S. B. Korada, E. Sasoglu, and R. Urbanke, “Polar codes: Characterization
of exponent, bounds, and constructions,” IEEE Transactions On Informa-

tion Theory, vol. 56, no. 12, pp. 6253–6264, December 2010.

