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Fast Encoding of Polar Codes with Reed-Solomon
Kernel

Peter Trifonov, Member, IEEE, Vera Miloslavskaya, Member, IEEE, Chen Chen, Yuangang Wang

Abstract—A low-complexity systematic encoding algorithm
for polar codes with Reed-Solomon kernel is presented. The
proposed method relies on fast Fourier transform based Reed-
Solomon encoding techniques. Application of polar codes in
storage systems is considered.

Index Terms—Polar codes, generalized concatenated codes,
Reed-Solomon codes.

I. INTRODUCTION

Polar codes were recently shown to be able to achieve
the capacity of a wide class of communication channels
while having very low encoding and decoding complexity
[1]. Furthermore, many applications of polar codes besides
communications systems were suggested. On the other hand,
numerous improvements to the original Arikan construction
of polar codes were proposed. In particular, polar codes over
Fq with an l × l Reed-Solomon (RS) kernel [2] provide the
highest possible polarization rate for the case of l ≤ q. This
results in significant performance gain with respect to polar
codes with Arikan kernel [3].

Applications typically require systematic encoding algo-
rithms. However, the original construction of polar codes
assumes non-systematic encoding. An efficient systematic
encoding algorithm for polar codes with Arikan kernel was
introduced in [4]. Besides implementation advantages, system-
atic polar codes were shown to provide lower symbol error rate
compared to non-systematic ones.

In this paper we address the systematic encoding problem
for the case of codes with a RS kernel. More specifically,
we propose an erasure decoding algorithm, and use it at the
encoder side for recovering the values of erased check sym-
bols. The main idea of the proposed method is to treat polar
codes as generalized concatenated ones. Then one can employ
a multistage decoding algorithm and recursively recover the
erasures. Furthermore, we exploit the algebraic structure of the
RS kernel in order to reduce the complexity of this algorithm.
The proposed approach can be considered as a generalization
of the systematic encoding algorithm for polar codes with
Arikan kernel [4], and the multidimensional polar encoding
and decoding method suggested in [5].

The paper is organized as follows. Section II introduces
polar, RS and generalized concatenated codes. Section III
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presents an erasure decoding algorithm, and some results on
correctable erasure patterns. These results are used in Section
IV to derive a fast systematic encoding algorithm. Section V
considers application of polar codes in storage systems.

II. BACKGROUND

A. Polar codes with Reed-Solomon kernel

An (n = lm, k) polar code over Fq with l × l kernel B
and the set of frozen symbols F ⊂ {0, 1, . . . , lm − 1} , |F| =
n− k, is a linear block code with codewords cn−1

0 = un−1
0 A,

such that ui = 0, i ∈ F , and uj ∈ Fq, j /∈ F . Here aji
denotes a vector (ai, . . . , aj), A = PmB⊗m, ⊗m denotes
m-times Kronecker product of a matrix with itself, and Pm is
a permutation matrix having 1’s in positions (j, R(j)), where

R (j) =

m−1∑
s=0

jsl
m−1−s

is the integer obtained by reversal of digits of integer j =∑m−1
s=0 jsl

s, js ∈ {0, . . . , l − 1} , in the base-l representation.
Figure 1 illustrates the non-systematic encoder for polar codes
for the case of l = 3,m = 2.

If symbols ci, 0 ≤ i < n, are transmitted over a memo-
ryless output-symmetric channel W (y|c), then one can define
synthetic subchannels with transition probabilities

W (i)
m (yn−1

0 , ui−1
0 |ui) =

1

qn−1

∑
un−1
i+1

n−1∏
j=0

W (yn−1
0 |(un−1

0 A)j).

It is possible to show that under some mild conditions on
matrix B the capacities of these subchannels converge to 0 or 1
symbols per channel use, and the fraction of subchannels with
capacities close to 1 converges to the capacity of W (y|c). This
enables one to construct capacity achieving polar codes by
selecting F as the set of indices of subchannels with capacity
close to 0 [1], [6]. Alternatively, one can select F as the
set of indices of subchannels with the highest Bhattacharyya
parameter. Polar codes can be considered as optimized codes
for multistage decoding [7], [8].

A RS kernel is given by the Vandermonde matrix

B =


αl−1
0 αl−1

1 . . . αl−1
l−1

αl−2
0 αl−2

1 . . . αl−2
l−1

...
...

. . .
...

α0
0 α0

1 . . . α0
l−1

 ,

where αi are some distinct elements of Fq . It can be seen that
the κ last rows of this matrix generate an (l, κ, l− κ+ 1) RS
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Fig. 1. Non-systematic encoder for polar codes

code. It is possible to show that the RS kernel provides the
highest possible polarization rate for l ≤ q [2]. Constructions
similar to polar codes with RS kernel were also considered in
[9], [10], [11].

B. Reed-Solomon codes

There are two equivalent ways to define an (l, κ, l− κ+1)
RS code [12], [13]. The first one is to consider it as a set of
vectors (f(α0), . . . , f(αl−1)), f(x) =

∑κ−1
i=0 fix

i. The second
way is to consider RS code of length l < q as a set of vectors
(c0, . . . , cl−1), which can be represented as

c(x) =
l−1∑
i=0

cix
i = a(x)

l−κ−1∏
i=0

(x− αb+i)

for some a(x) : deg a(x) < κ, where α is a primitive element
of Fq . These definitions are equivalent if b = 1 and αi =
αi, 0 ≤ i < l = q − 1. In order to obtain a code of length
l = q for κ < l, one can set αl−1 = 0, so that ci = f(αi),
and cl−1 = −

∑l−2
i=0 ci.

The second definition enables one to derive an efficient
erasure correcting algorithm. Let us consider for the sake
of simplicity the case of αi = αi, q = 2µ, l < q, and
assume that symbols ce1 , . . . , cet , 0 ≤ t ≤ l − κ, are erased.
Let S(x) =

∑l−κ−1
i=0 Six

i be a syndrome polynomial with
coefficients given by

Si =

l−1∑
j=0

cjα
j(i+b). (1)

Let Λ(x) =
∏t

j=1(1+αejx) be the erasure locator polynomial,
and let

Γ(x) ≡ S(x)Λ(x) mod xl−κ (2)

be the erasure evaluator polynomial. It can be verified [12],
[13] that

cej =
α−b
ej Γ(α

−1
ej )∏t

s=1
s̸=j

(1 + αesα
−1
ej )

=
α1−b
ej Γ(α−1

ej )

Λ′(α−1
ej )

, (3)

where Λ′(x) is the formal derivative of Λ(x).
The standard way to implement these calculations is to

use the Horner rule for computing Si and Γ(α−1
ej ). Fast

Fourier transform techniques were suggested to speed up these
calculations [14], [15].

C. Generalized concatenated codes

It is convenient to treat polar codes in the framework of
generalized concatenated codes [16], [17], [18]. A generalized
concatenated code (GCC) over Fq is given by outer codes
Ci(N,Ki, Di), 0 ≤ i < l, and nested inner codes Ci(l, l −
i, di). Inner codes can be given by an l × l matrix B, such
that rows i, . . . , l − 1 of this matrix generate Ci.

A GCC codeword can be considered as an l × N matrix
C, which is obtained as follows. Partition the data into l
blocks of size Ki. Then encode the i-th block with code
Ci, and place the obtained codeword into the i-th row of
the matrix. Let C ′ be the obtained matrix. Finally, multiply
BT by each column of C ′, i.e. compute C = BTC ′. It
is possible to show that this encoding procedure defines
(Nl,

∑l−1
i=0 Ki, d ≥ min0≤i<l diDi) linear code. Observe that

by setting i initial data blocks to zero, one obtains that each
column of C is a codeword of Ci. This fact is exploited in
the multistage decoding algorithm described below, which at
stage i essentially subtracts from C the contribution of i initial
blocks, so that it can use the decoders of Ci and Ci.

Observe that encoding of polar codes with kernel B can
be represented as c = uPm(B⊗(m−1) ⊗ B). This implies
that polar codes with RS kernel can be considered as GCC
with inner codes being (l, l − i, i + 1) RS codes, and outer
polar codes of length lm−1 with RS kernel. The outer
codes are given by the sets of frozen symbols F (i) ={
j|0 ≤ j < lm−1, (ilm−1 + j) ∈ F

}
. By induction, one can

show from this that the minimum distance of polar codes with
RS kernel is given by

d ≥ min
j /∈F

m−1∏
s=0

(js + 1), (4)

where j =
∑m−1

s=0 jsl
s, 0 ≤ js < l. This statement is obvious

for m = 1.
The standard way to decode GCC is to employ the mul-

tistage decoding algorithm [19]. The successive cancellation
decoding algorithm suggested for polar codes can be consid-
ered as an instance of multistage decoding.

D. Systematic encoding

By systematic encoding we mean such encoding method, so
that the information symbols appear as a part of the obtained
codeword. For any (n, k) linear block code one can obtain a
generator matrix G = (I|A)P , where P is a permutation ma-
trix. The systematic encoder can be implemented as c = xG,
so that codeword c contains k information symbols xi and
n−k check symbols. The complexity of such implementation
is O(nk) due to O(k) operations for each of the (n−k) check
symbols. Systematic encoding algorithms with complexity
O(n log n) are known for polar codes with Arikan kernel [4],
[20], [21], [22]. The objective of this paper is to present a
more efficient systematic encoding algorithm for polar codes
with RS kernel.

Note that there may exist many different generator matrices
in the systematic form. In order to design an efficient system-
atic encoding algorithm, we will need to adjust the generator



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 7, JULY 2016 3

matrix of a polar code, so that it admits application of some
standard fast algorithms.

III. EFFICIENT ERASURE DECODING FOR POLAR CODES

In this section we present an efficient erasure decoding
algorithm for polar codes with RS kernel. It exploits their
relationship with generalized concatenated codes, and can be
considered as an instance of the multistage decoding algo-
rithm. We show how this algorithm can be related to classical
decoding algorithms for RS codes, and exploit their algebraic
structure in order to reduce the complexity.

A. An iterative erasure decoding algorithm

Consider an l×N matrix C corresponding to a codeword of
a generalized concatenated code with inner RS codes. Observe
that the columns of matrices C ′ and C are related by the
expression C−,i = BTC ′

−,i, 0 ≤ i < N , i.e.

Cj,i =
l−1∑
t=0

BtjC
′
t,i =

l−1∑
t=0

αl−1−t
j C ′

t,i. (5)

This expression is very similar to the one used in the first
definition of RS codes.

Lemma 1. Consider a GCC with inner RS codes (l, l− j, j+
1), 0 ≤ j < l. Assume that there are s ≤ l erasures in the i-th
column of a GCC codeword matrix C. If values C ′

t,i, 0 ≤ t < s
are known, then these erasures can be recovered.

Proof. Let E be the set of indices t, such that Ct,i are erased.
One can rewrite (5) as

Cj,i =
l−s−1∑
t=0

αt
jC

′
l−1−t,i︸ ︷︷ ︸

c̃j

+
l−1∑

t=l−s

αt
jC

′
l−1−t,i︸ ︷︷ ︸

ĉj

.

The first term can be considered as the j-th symbol of
(l, l−s, s+1) RS code, and the second term depends only on
C ′

t,i, 0 ≤ t < s. One can apply an erasure decoding algorithm
to vector (C0,i − ĉ0, . . . , Cl−1,i − ĉl−1), where the values in
positions j ∈ E are replaced with the erasure symbol ϵ, in
order to recover c̃j , and obtain eventually Cj,i.

This lemma enables one to use the multistage algo-
rithm shown in Figure 2 for erasure decoding of in an
(Nl,

∑l−1
i=0 Ki,≥ mini Di(i + 1)) GCC with inner RS codes

of length l. Note that similar approach was suggested for the
case of interleaved RS polar concatenated codes [23].

In order to prove the correctness of this algorithm, we need
to show that step 2 can be always performed.

Lemma 2. After the multistage erasure decoding algorithm
has reached the j-th iteration, each column of C has either
0, or at least j + 1 erasures.

Proof. The statement is trivial for j = 0. Assuming that it is
true for some j < l− 1, consider the operations performed at
iteration j. If outer code decoding does not fail at step 3, then
values C ′

t,i, 0 ≤ t ≤ j would be available, so that by Lemma
1 one can correct up to j +1 erasures in any column. Hence,

Input: an l ×N codeword matrix C with erasures
Output: a codeword of the GCC.

1) Let j ← 0.
2) If there are s > j erasures in the i-th column, 0 ≤ i <

N, of matrix C, then set C ′
j,i ← ϵ. Otherwise, compute

C ′
j,i ← ((BT )−1C−,i)j .

3) Perform erasure decoding of (C ′
j,0, . . . , C

′
j,N−1) in the

outer code Aj . If this fails, declare decoding error and
stop.

4) Use symbols C ′
t,i, 0 ≤ t ≤ j, in order to recover erasures

in columns i of C having at most j + 1 erasures, as
described in the proof of Lemma 1.

5) If there are still erasures in matrix C and j < l− 1, let
j ← j + 1, go to step 2.

Fig. 2. Multistage decoding in a GCC

at the beginning of iteration j + 1, each column of C would
contain either 0, or more than j + 1 erasures.

Theorem 1. For a GCC with inner RS codes and outer
(N,Ki, Di) codes Ci, the multistage erasure decoding algo-
rithm can recover any configuration of up to d − 1 erasures,
where d = mini Di(i+ 1)

Proof. Consider decoding of a codeword with d− 1 erasures.
Lemma 2 implies that for any i at the beginning of iteration
i the columns of matrix C have either 0, or at least i + 1
erasures. Hence, the number of columns with erasures is at
most

⌊
d−1
i+1

⌋
≤ Di − 1. This implies that erasure decoding of

outer code Ci at step 3 would be successful, i.e. the algorithm
does not declare a decoding failure. After l iterations, no
columns with erasures can remain in the codeword being
decoded.

It appears that the multistage erasure decoding algorithm
can recover some combinations of more than d− 1 erasures.

Lemma 3. Let Ej ⊂ {0, . . . , N − 1} be a family of erasure
patterns, i.e. the sets of positions of erased codeword symbols,
recoverable by outer codes Cj , 0 ≤ j < l, respectively. If
E0 ⊃ E1 ⊃ · · · ⊃ El−1, then the multistage erasure decoding
algorithm for the GCC with outer codes Cj and inner RS codes
of length l can recover any erasure pattern, such that the i-th
column of codeword matrix has at most

w(i) = | {j|i ∈ Ej} |, 0 ≤ i < N,

erasures.

Proof. Let C ∈ Fl×N
q be a codeword with at most w(i)

erasures in each column i. Due to nested property of erasure
patterns Ej , one obtains w(i) = 1+maxj:i∈Ej j. Consider the
j-th iteration of the multistage erasure decoding algorithm. At
step 2 one obtains vector (C ′

j,0, . . . , C
′
j,N−1), where erasures

may occur only in positions given by Ej . Therefore, these
erasures can be recovered at step 3, i.e. decoding does not
fail. After the algorithm terminates, the columns may have no
erasures.
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Input: vector c with erased and non-erased symbols.
Output: a codeword of the polar code.

1) Declare all erased codeword symbols ci as ”unknown”,
and non-erased ones as ”known”. Declare all frozen
symbols ui, i ∈ F , as known.

2) If any node B has t > 0 unknown output symbols, then
declare its input symbols with indices 0, . . . , t − 1 as
”unknown”, unless some of these symbols are already
declared ”known”, in which case keep them ”known”.
Furthermore, declare the remaining input symbols as
”needed”, unless they are declared ”known”. Apply this
operation recursively.

3) Repeat until all codeword symbols become known:
A: If all output symbols of a node are ”known”,

compute its ”needed” input symbols (i.e. multiply
the vector of output symbols of a node by an
appropriate submatrix of B−1) and declare them
known.

B: If a node has t known input symbols, t unknown
and l− t known output symbols, recover unknown
symbols by local decoding at the node as described
in the proof of Lemma 1 (see also Section IV-B
below). Declare all recovered output symbols as
known.

C: If a node at layer m has at least one unknown input
symbol, declare decoding failure.

Fig. 3. Iterative erasure decoding in a polar code

Recall, that polar codes can be considered as GCC, where
outer codes are also polar ones. This enables one to employ
the multistage erasure decoding algorithm recursively for
decoding of outer codes, as shown in Figure 3. This algorithm
can be considered as an implementation of the multistage
erasure decoding algorithm for the case of polar codes. By
abuse of notation, we denote by node B a device implementing
multiplication of an input vector (shown on the left to it in
Figure 1) by matrix B.

It is possible to reduce the complexity of this algorithm by
performing some steps of it at the design time. Namely, if all
input symbols of a node are frozen, i.e. set to zero, then all its
output symbols are also zero, i.e. they can be declared known.

Observe that if the condition of Step C is not satisfied, this
algorithm always completes successfully in a finite number of
steps.

It can be seen that for each node in the encoding scheme
steps A and B are executed at most once, and the number
of such nodes is n

l logl n. The complexity of straightforward
implementation of Steps A and B is O(l2). Hence, the com-
plexity of the proposed algorithm is at most O(nl logl n).

The proposed algorithm can be considered as an instance
of successive cancellation decoding. It is also similar to the
encoding algorithm for generalized error location codes [24].

B. Efficient implementation of Step A

Consider the case of l = q = 2µ, and assume without loss
of generality that αi = αi, 0 ≤ i < q− 1, αq−1 = 0. It can be

verified that

B =


0

W
...
0

1 1 . . . 1 1

 , B−1 =


0

W−1
...
0

1 0 . . . 0 1

 ,

where Wij = α(q−1−i)j , so that Q = (W−1)T is the discrete
Fourier transform matrix, i.e. Qij = αij . Hence, Step A, i.e.
calculation of (S′

0, . . . , S
′
δ−1)

T = B̃(P0, . . . , Pq−1)
T , where

S′
i and Pj are input and output symbols of a node, δ is the

number of needed input symbols, and B̃ is the submatrix of
(B−1)T consisting of δ bottom rows, can be implemented
using the FFT-based syndrome evaluation techniques described
in [14] with complexity O(δ log log l) multiplications and at
most O(δl/ log l) summations, or using the method given in
[25] with complexity at most O(l log2 l).

IV. EFFICIENT SYSTEMATIC ENCODING

The above described multistage/iterative erasure decoding
algorithm can be used in order to implement systematic
encoding. Indeed, one can assume that all n− k = |F| check
symbols are erased, and recover them using erasure decoding.
However, one needs to identify a specific set of codeword
symbols, which can be used as check ones. We propose a
specific symbol assignment method, which enables significant
reduction of encoding complexity.

In section IV-A we provide a generalization of the method
given in [4]. Section IV-B provides an improved implementa-
tion of Step B of the iterative erasure decoding algorithm.

A. Assignment of check symbols

The following theorem essentially states that check sym-
bols can be placed on positions R(j), j ∈ F , within the
codeword, where R(j) is the digit-reversal function. In or-
der to prove that this approach works, we will recursively
represent polar codes as generalized concatenated codes. At
level τ of the recursion, one starts from a polar code with
the set of frozen symbols F (p) ⊂ {0, . . . , lm−τ − 1} , p ∈
{0, . . . , l − 1}τ , and represents it as a GCC with outer po-
lar codes given by the sets of frozen symbols F (p,t) ={
i|0 ≤ i < lm−τ−1, (tlm−τ−1 + i) ∈ F (p)

}
, 0 ≤ t < l. Here

p denotes a τ -dimensional index of the code.

Theorem 2. Consider a polar code of length n = lm with
RS kernel and the set of frozen symbols F , such that F (p,t) ⊃
F (p,t+1) for any p ∈ ∪m−2

i=0 {0, . . . , l − 1}i, 0 ≤ t < l − 1. If
only codeword symbols cR(j) are erased, where j ∈ F , then
the multistage erasure decoding algorithm can recover all of
them.

Proof. For m = 1 the theorem essentially states that a single-
layer (l, κ) polar code with the set of frozen symbols F =
{0, 1, . . . , l − κ− 1}, i.e. a RS code, can recover a particular
combination of l−κ erasures. This statement is obviously true.

Assume that the theorem holds for some m ≥ 1, i.e. that
a polar code of length lm with the set of frozen symbols F
satisfying the above constraints can recover erasure pattern
E = {R(j)|j ∈ F}. Consider now a polar code of length
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lm+1. It can be represented as a GCC with inner RS codes of
length l, and outer polar codes Ct of length lm with the sets
of frozen symbols F (t), 0 ≤ t < l. Observe that each of the
sets F (t) satisfies the conditions of the theorem.

Any codeword C of the considered polar code can be
represented as an l× lm matrix. Consider some erased symbol
cj , j =

∑m
s=0 jsl

m−s, where
∑m

s=0 jsl
s ∈ F , 0 ≤ js < l. In

matrix representation of the codeword it is placed in column
j′ =

∑m−1
s=0 jsl

m−1−s and row jm. Hence, row t has erasures
in columns given by the set Et =

{
R(j)|j ∈ F (t)

}
, 0 ≤ t < l.

By inductive assumption, erasure pattern Et is correctable by
outer code Ct. Since F (t) ⊃ F (t+1), 0 ≤ t < l − 1, the total
number of erasures in column j′ is w(j′). Hence, Lemma
3 implies that the iterative erasure decoding algorithm can
recover all erasures in C as well.

Hence, the multistage erasure decoding algorithm can re-
cover erasure pattern E for a code of length lm+1.

Example 1. Consider a polar code corresponding to the encod-
ing scheme shown in Figure 1. Here p is an empty vector, F =
{0, 1, 2, 3}, so that F (0) = {0, 1, 2} ,F (1) = {0} ,F (2) = ∅.
These sets satisfy the requirements of Theorem 2, so one can
place check symbols on positions 0, 3, 6, 1.

These check symbols can be recovered as follows. First,
observe that the output of the 0-th node is always zero. There-
fore, the 0-th input symbols of nodes 3, 4, 5 are known. Let
us declare symbols c0, c1, c3, c6 unknown, and c2, c4, c5, c7, c8
known. Figure 4(a) shows known symbols as black circles, and
unknown symbols as white circles. Hence, input symbol 1 of
node 3 should be declared unknown.

Now both nodes 4 and 5 have one known input symbol
(which is equal to zero) and one unknown output symbol.
Hence, c3 and c6 can be recovered by erasure decoding of
vectors (ϵ, c4, c5) and (ϵ, c7, c8) in (3, 2, 2) RS code. Now
all output symbols of nodes 4 and 5 are known, so one
can compute all their input symbols (only input symbol 1 is
actually needed) and declare them known, as shown in Figure
4(b).

After this node 1 has one known input symbol, two known
and one unknown output symbols. The latter one (i.e. the input
symbol 1 of node 3) can be recovered by erasure decoding of
(3, 2, 2) RS code, as shown in Figure 4(c).

Eventually, c0 and c1 are recovered by erasure decoding of
the coset of (3, 1, 3) RS code, which is given by input symbol
1 of node 3. Let us consider the latter operation in more details.
The input symbols S′

0, S
′
1, S

′
2 of node 3 are related to its output

symbols via expression (S′
0, S

′
1, S

′
2) = (c0, c1, c2)Q, where

Q = B−1. Then one obtains

S′
0 =c0Q00 + c1Q10 + c2Q20 (6)

S′
1 =c0Q01 + c1Q11 + c2Q21 (7)

S′
2 =c0Q02 + c1Q12 + c2Q22. (8)

(6)–(7) can be recognized as syndrome decoding equations for
a code with check matrix given by two topmost rows of QT .
Equation (8) is neither needed, nor usable, since S′

2 cannot
be recovered without knowledge of u6, u7, u8, which are not
available to the decoder. Given the values of c2, S

′
0, S

′
1, one

can recover from (6)–(7) the erased symbols c0, c1.

The standard way to construct polar codes is to select F
as the set of indices of subchannels W

(i)
m (yn−1

0 , ui−1
0 |ui) in-

duced by the polarizing transformation with the smallest Bhat-
tacharyya parameters Z(i)

m . No techniques are currently known
for computing these parameters for the case of RS kernel and
arbitrary channel. However, if W (y|c) is a q-ary erasure chan-
nel (q-EC), the synthetic subchannels W (i)

m (yn−1
0 , ui−1

0 |ui) are
also q-EC, and their Bhattacharyya parameters are simply
the erasure probabilities, which can be expressed via the
decoding error probability of the corresponding RS codes. It
is possible to show that the Bhattacharyya parameter for the
i-th subchannel induced by the polarizing transformation can
be recursively computed as [2]

Z(i)
m =

l∑
t=i′′+1

(
l

t

)(
Z

(i′)
m−1

)t (
1− Z

(i′)
m−1

)l−t

, (9)

where i = i′′ + li′, 0 ≤ i′′ < l, and Z
(0)
0 is the erasure

probability of the underlying channel W (y|c). It can be seen
that Z(i′′+li′)

v ≥ Z
(i′′+1+li′)
v , i′′ < l − 1 for any v > 0. This

together with Lemma 4.7 of [26] implies that polar codes con-
structed for the q-ary erasure channel satisfy the requirements
of Theorem 2. Indeed, the Bhattacharyya parameters of the
subchannels derived from W

(i′′+li′)
v cannot be less than the the

Bhattacharyya parameters of the corresponding subchannels
derived from W

(i′′+1+li′)
v , i′′ < l − 1.

More detailed characterization of the set of recoverable
erasure patterns is given by the following theorem.

Theorem 3. Consider some erasure pattern E correctable by
the multistage erasure decoding algorithm. Let Eλ,j be the set
of unknown output symbols of node j at some layer λ after
step 2 of the MSD algorithm. If E′ is another erasure pattern,
such that |E′

λ,j | = |Eλ,j |, 0 ≤ j < lm−1, then E′ is also
correctable.

Proof. The set of unknown input symbols of all nodes at layer
λ after step 2 is identical for both erasure patterns. Since these
symbols are recoverable for E, they are recoverable for E′ too.
Hence, the condition of step C of the MSD algorithm is never
satisfied, and it completes successfully in a finite number of
steps.

In order to implement systematic encoding for an (lm, k)
polar code, one needs to identify the positions of lm−k check
symbols. This can be done using Theorem 2.

B. Efficient implementation of Step B

In this section we provide an efficient implementation of
Step B, which becomes possible if the set of erased output
symbols to be recovered by the nodes within the encoding
scheme can be controlled at the design time.

Let l = q = 2µ. Let (S0, . . . , Sl−1) and (P0, . . . , Pl−1) be
the input and output symbols of a node, respectively, and let
E = {e1, . . . , eδ} , δ < l, be the set of indices of unknown
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Fig. 4. An example of erasure recovery

output symbols. Assume that αi = αi, 0 ≤ i < q− 1, αq−1 =
0. Then one obtains

Si +
∑
j /∈E

αi
jPj︸ ︷︷ ︸

S′
i

=
δ∑

j=1

αi
ejPej , 0 ≤ i < δ.

The values of S′
i can be computed using FFT-based syndrome

evaluation techniques. Then erased symbols Pe1 , . . . , Peδ can
be obtained using the RS decoding techniques described in
Section II-B.

If E is a union of a number of cyclotomic cosets{
ai, 2ai, . . . , 2

mi−1ai
}

, where 2miai ≡ ai mod 2µ − 1,
and mi|µ, then Λ(x) is a polynomial with binary coef-
ficients. Hence, computing (2) does not require any mul-
tiplications. Furthermore, (3) can be computed using the
cyclotomic FFT method [25], [27] Indeed, let α−ais =∑mi−1

t=0 Aitsγ
2t

i , Aits,∈ F2, be an expansion of α−ais in a
normal basis γi, . . . , γ

2mi−1

i of F2mi . Then

Γ(α−ai2
j

) =

mi−1∑
t=0

γ2t+j

i

l−κ−1∑
s=0

AitsΓs.

In matrix notation this becomes
Γ(α−ai)
Γ(α−2ai)

...
Γ(α−2mi−1ai)

 = LiAi


Γ0

Γ1

...
Γl−κ−1

 ,

where Li is a circulant matrix consisting of γ2t+j

i values, and
Ai is a binary matrix.

Observe also that computing (2) is equivalent to multiplying
a binary Toeplitz matrix Λ̃ with elements Λi by the vector
of Si + S′

i values. Hence, the unknown output elements
Pe1 , . . . , Peδ of a node can be computed asPe1

...
Peδ

 = diag(
αei

Λ′(α−ei)
, 1 ≤ i ≤ δ)︸ ︷︷ ︸

D

LAΛ̃

 S0 + S0′

...
Sδ−1 + S′

δ−1,

 ,

(10)
where L is a block-diagonal matrix consisting of circulant
matrices Li. Multiplication by matrices Li reduces to cyclic
convolutions with total complexity O(δ logµ), and multi-
plication by binary matrix AΛ̃ can be implemented using

either the recursive algorithm described in [25] with complex-
ity O(δ log2 δ), or computer-optimized algorithms [28], [29],
which require at most O(δ2/ log δ) operations. For small δ the
latter approach turns out to be much more efficient. Observe
that the straightforward evaluation of (2) and (3) requires
O(δ2) operations.

Hence, the complexity of Step B can be significantly
reduced if unknown symbols are mapped onto a union of
cyclotomic cosets. This can be always be done in the case
of µ = 2τ . Since mi|µ, one can construct decomposition
δ = δ′µ +

∑τ−1
i=0 δimi, δi ∈ {0, 1}, and construct E as a

union of cyclotomic cosets of size µ and mi : δi = 1. This
requires one to permute the output edges of the corresponding
nodes in the encoding scheme, so that the top δ edges become
connected to output ports given by set E. Essentially this
means that different nodes in the encoding scheme implement
multiplication of the input vectors by matrices BΠ with node-
specific permutation matrices Π. It must be recognized that
in general introducing such permutations results in a differ-
ent code. However, this does not affect channel polarization
properties, since these permutations are applied to identical
synthetic channels.

Example 2. Consider the case of l = 16,m = 2,F =
{0, 1, 2, 3, 4, 16, 17, 18}, αi = αi, 0 ≤ i < 15, α15 = 0.
That is, there are 5 and 3 frozen symbols at the input of
nodes 0 and 1 at layer 1. It is advantageous to map erased
symbols at the output of node 0 to positions 0, 1, 2, 4, 8,
and positions 0, 5, 10 for node 1. In the case of node 1 one
obtains Λ(x) = (1 + x)(1 + α5x)(1 + α10x) = 1 + x3,
Λ′(x) = x2, so that D and Λ̃ in (10) become identity matrices,

and L =

1 0 0
0 α5 1 + α5

0 1 + α5 α5

. Computing a product of

this matrix and a vector requires just 1 multiplication by α5,
while the standard approach to evaluation of (3) would require
at least 9 multiplications. In the case of node 0 recovery of 5
output symbols requires 5 multiplications.

Hence, the proposed approach enables one to perform
systematic encoding of polar codes with RS kernel with
complexity O(n log n log l) or O(nl logn

log l ). This is the same
as the asymptotic complexity of non-systematic encoding,
provided that the latter is implemented using FFT techniques.
However, systematic encoding requires one to perform partial
FFT, i.e. compute only a few components of the DFT. This
has much smaller complexity than the generic FFT algorithm.
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Example 3. For the (256, 248) code considered in Example 2,
the proposed encoding algorithm requires 89 multiplications.
This is much less than the cost of a generic systematic en-
coding algorithm (1976 multiplications) and a non-systematic
encoder, which employs FFT for multiplication by the kernel
matrix (512 multiplications).

C. Extensions

The proposed approach can be used in the case of polar
codes with kernel of size l < q. In order to do this, one
should just assume that some q − l output symbols of each
node in the encoding scheme are equal to 0. Let Z be the set
of such symbols. Technically, in this case the kernel is equal
to a submatrix of matrix B′ = WB, which consists of top
l rows, and columns not in set Z, where W is an invertible
matrix, such that top l rows of B′ have zeroes in columns
given by Z.

The proposed approach can be also used in the case of polar
codes with mixed kernel [30], i.e. codes with the polarizing
transformation given by A = PB1⊗B2⊗· · ·⊗Bm, where Bi

are RS kernels of various dimensions, and P is an appropriate
permutation matrix.

V. STORAGE APPLICATIONS

Since polar codes are obtained via a recursive concate-
nation construction, they can be used to provide protection
against hierarchical erasures with arbitrarily many layers in
the hierarchy. Hence, as a possible application area of polar
codes with RS kernel, we consider a storage system, which
includes ls servers, each server includes ld storage devices,
and each storage device includes lb blocks1. Observe that
any server failure implies failure of all the associated storage
devices, and failure of any storage device implies failure of
all associated blocks. In order to implement protection against
block, device and server failures, one can encode the data with
an (n = lsldlb, k) polar code with polarizing transformation
given by A = PBs⊗Bd⊗Bb, where Bi is a li× li RS kernel,
so that codeword symbol cjsldlb+jdlb+jb is stored on block jb
on device jd within server js. The set of frozen symbol indices
F for this code can be designed by combining the following
rules, depending on specific application requirements:

• Select F as the set of subchannel indices j with the
highest values of Z

(3)
j (see (9)), where Z

(0)
j is the

probability of block failure within a sufficiently large time
interval.

• Include into F all such j = js + lsjd + lsldjb : (jb +
1)(jd + 1)(js + 1) < d. This ensures that the code can
recover all combinations of d− 1 block failures.

• Include into F all j < tlsld, where t is the number of
block failures within each device the system needs to
survive. This results in t zero input symbols for nodes
at layer 0 in the encoding scheme, so that the iterative
erasure decoding algorithm is able to recover up to t block

1The actual number of blocks on a device may be much higher. However,
one can assume that the device consists of superblocks, and each superblock
contains lb blocks.

failures on each device by accessing only the information
on the same device.

• Include into F all j = js + jblsld, 0 ≤ js < ls, 0 ≤ jb <
ϕ, where ϕ is the number of device failures, which can
be recovered by the code. This ensures that there are ϕ
zero input symbols for each node at layer 1. Observe that
ϕ device failures within each server can be recovered by
accessing the data only within the corresponding server.

Similar rules can be derived in order to implement protection
against server failures.

Hence, in the context of storage systems, polar codes can
be considered as a generalization of STAIR codes [31] and
sector-disk codes [32]. The most important advantage with
respect to these codes is that polar codes enable one to provide
protection against failures of any entity (block, device, server,
rack, etc) of a storage system. Furthermore, the proposed
encoding algorithm in the case of m = 2, l = ld = lb = q
has complexity O(n logn log l) = O(l2 log2 l), while the
complexity of the encoding algorithms for STAIR codes is
O(l3). This gain is not only asymptotical, but appears also in
practice, since it essentially corresponds to the gain provided
by FFT-based RS encoding and decoding techniques [14], [15]
with respect to the standard approach, which was shown in
[15] to be quite significant even for small values of l.

VI. CONCLUSIONS

In this paper a low-complexity systematic encoding algo-
rithm for polar codes with Reed-Solomon kernel was sug-
gested. The proposed method is based on FFT encoding and
decoding techniques introduced originally for the case of
Reed-Solomon codes.

The proposed method can be used in storage systems, where
polar codes with relatively big Reed-Solomon kernel can be
used in order to implement protection against block, device
and server failures, and enable local recovery of most typical
failure configurations.
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