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Abstract—A novel construction of irregular LDPC codes based
on cyclic shift matrices is presented. The construction allows
compact specification of LDPC codes of arbitrary length. An
optimization algorithm is presented for finding the parameters
of the code.

I. INTRODUCTION

Low density parity check codes have gained recently a
lot of interest due to their excellent performance. Despite
of substantial progress in the asymptotical analysis of LDPC
codes [1], design of good codes of short and moderate length
still remains an open problem. The main reason for this is that
density evolution, the most widely use LDPC code analysis
tool, allows one to obtain only very high-level information
about the ensemble of codes, such as node degree distribution
of the associated Tanner graph. However, this ignores the im-
portant properties of finite-length codes, such as stopping sets
and minimum distance. Furthermore, compact representation
of code parity check matrix is needed in order to implement
LDPC coding in a practical system. On the other hand, most
of the existing algebraic LDPC code design techniques lead
to structured LDPC codes, which are regular and inherently
lack the capacity approaching behaviour.

In this paper a systematic method for finding good struc-
tured irregular LDPC codes is presented. The paper is or-
ganized as follows. Section II introduces the motivation and
necessary background of the new code construction. Section
III describes the proposed polynomial based construction and
an algorithm for optimization of its parameters. Numeric
results are presented in Section IV. Finally, some conclusions
are drawn in Section V.

II. MOTIVATION AND BACKGROUND

Low density parity check codes are defined as linear block
codes with a sparse parity check matrix. Each r × n parity
check matrix H can be equivalently characterized by a bipar-
tite Tanner graph with n variable and r check nodes, so that
the i-th check node is connected to the j-th variable node iff
hij = 1. Decoding of LDPC codes is usually performed by
the belief propagation algorithm, which operates by passing
messages over the network defined by Tanner graph [2].

It was shown in [1] that the performance of an ensemble
of infinite-length LDPC codes decoded by the belief prop-
agation algorithm is characterized by the iterative decoding
threshold, which depends on the node degree distribution of
the associated Tanner graphs. Tables of optimized node degree
distributions are available [1]. For finite length codes, the
performance depends also on code minimum distance and
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Fig. 1. Zigzag pattern

configuration of stopping sets in the Tanner graph. Short (espe-
cially length 4) loops in the Tanner graph are known to degrade
the performance of the message-passing decoding algorithm
[2]. However, it was shown in [3] that not all short loops
are equally harmful, and approximate cycle extrinsic message
degree metric (ACE) was suggested for characterization of
loop impact on the code performance. It was shown in [4]
that by imposing a constraint on minimum ACE of a Tanner
graph one can limit the number of small stopping sets and
increase the minimum distance of the code. Furthermore, many
constructions of good LDPC codes with length-6 loops were
proposed recently (see for example [5]).

Numeric optimization reveals that the Tanner graphs of
good LDPC codes should have significant number of degree-2
nodes, no degree-1 nodes, and some nodes of degree 3 and
higher [1]. It is known that short loops in the Tanner graph
involving only degree-2 nodes are particularly harmful for per-
formance of short and moderate length codes. Therefore, it is
strongly desired to arrange them into a loop-free configuration.

In practical systems one can usually implement only codes
with structured parity check matrices. A widely used approach
to construction of structured low-density parity check matrices
is expansion of some template matrix [6], [7], [13]. However,
it is quite difficult to find a template matrix with any explicit
guarantees of code minimum distance. In this paper a different
approach is adopted. Namely, the template matrix is used to
construct only a part, denoted here by H̃ , of the check matrix.
The template matrix is optimized in order to maximize the
estimated code minimum distance.

III. STRUCTURED LDPC CODES

This section introduces a novel construction of structured
LDPC codes and presents some techniques which can be used
for optimization of code parameters.

A. Code construction

A simple way to avoid short loops involving degree-2 nodes
in the Tanner graph is to arrange them into the zigzag pattern,



which is illustrated in Figure 1. It corresponds to bidiagonal
submatrix Ĥ in the parity check matrix. Observe that the
zigzag pattern involves one degree-1 node, which should not
affect the performance of a sufficiently long code. It will
be assumed here that there are no degree-2 nodes in the
Tanner graph except those connected to the zigzag pattern.
Hence, the parity check matrix of the proposed family of
codes can be represented as H = (Ĥ|H̃), where H̃ is a
submatrix containing at least 3 ones in each column. Such
codes can be also considered as a generalization of irregular
repeat-accumulate codes [8]. Similar construction was also
considered in [9].

Since Ĥ is a square r × r non-singular matrix, any valid
codeword c = (ĉ|c̃) of such code must satisfy ĉT = Ĥ−1H̃c̃T ,
where c̃ is the vector of information symbols, ĉ is the vector
of check symbols. The structure of the zigzag pattern allows
one to calculate the weight of vector y = Ĥ−1x as

S(x) =

⌈l/2⌉−1∑
j=0

(xl−2j − xl−2j−1), (1)

where xj : 0 ≤ xj < xj+1 < . . . ≤ r − 1, j = 1..l are
positions of non-zero elements in vector x, and x0 = −1.

Submatrix H̃ should be constructed under the constraints of
code minimum distance, node degree distribution and stopping
set avoidance. We propose to construct this matrix as H̃ =
ΠA, where Π is a permutation matrix, and A is a block matrix
consisting of cyclic shift matrices and zero matrices. More
specifically, let r = ps and n − r = pt be the number of
rows and columns in H̃ , where p, s and t are some positive
integers. Let Λ(x) =

∑
i≥2 Λix

i−1 be the target variable node
degree distribution, where Λi is the fraction of variable nodes
of degree i in the Tanner graph to be constructed, and Λ2 = r

n .
Let tip = Λipt be the number of variable nodes of degree i >
2, so that

∑
i ti = t. Appropriate rounding may be necessary

in order to obtain integer values ti. Let wj , j = 0..t − 1 be
the sequence of integers such that |{j|wj = i}| = ti and
wj ≤ wj+1. Matrix A contains submatrices ∆pij in positions

(ϕij , j), i = 1..wj , where ∆ =


0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...
0 0 0 . . . 1 0

 is

the p× p permutation matrix corresponding to one-step cyclic
shift, and ϕi,j < ϕi+1,j . The remaining positions of A are
filled with zero matrices.

The permutation matrix Π should be designed so that the
vectors obtained as ΠAc̃T for low-weight c̃ do not transform
into low-weight vectors ĉT = Ĥ−1ΠAc̃T . Equation (1)
implies that this can happen if ΠAc̃T contains closely located
1’s. A possible way to construct Π, which enables some
simplifications in the optimization algorithm described below,
is to use permutation (block interleaver) Π(i) = (i mod

p)s+
⌊

i
p

⌋
, i = 0..sp− 1. Then matrix H̃ consists of columns

(h0,0, h0,1, . . . , h0,p−1, h1,0, . . . , h1,p−1, . . . , hs−1,p−1),

where column hj,k contains 1’s in positions
ϕij + s(pij + k) mod ps, i = 1..wj . Pairs (ϕij , pij)
completely specify the parity check matrix of the code.
Alternatively, the check matrix can be specified by template
matrix P containing pij in positions (ϕij , j) and ∞ in other
ones. Then A can be defined as a block matrix with elements
∆Pij , assuming that ∆∞ is a zero matrix.

B. Optimization algorithm

The idea of the optimization algorithm presented below is
that the low-weight information words c̃ after multiplication by
Ĥ−1H̃ should not be transformed into low-weight ĉ vectors,
obtaining thus low-weight codewords.

In principle, one can consider all possible information
vectors c̃, compute for a given (ϕij , pij) set the vector
x = H̃c̃T , find the weight of ĉ using the expression (1),
and deduce the minimum distance dmin of the code obtained.
Then one can perform maximization of dmin over all possible
(ϕij , pij) values. However, this approach is quite impractical
due to large number of input patterns, and huge size of the
search space. Therefore one has to limit the search scope
to vectors c̃ of sufficiently small weight, as well as impose
some constraints on possible (ϕij , pij) values. In this case one
may not be able to obtain an exact value of code minimum
distance. Nevertheless, this approach allows one to eliminate
many low-weight codewords, reducing thus the decoding error
probability.

Optimization of code parameters (ϕij , pij) can be per-
formed iteratively according to the following randomized
search algorithm:

1) Let j := 0.
2) Generate ϕij and pij randomly, so that 0 ≤ ϕ1j <

ϕ2j < . . . < ϕwjj < s and 0 ≤ pij < p. A number
of constraints on these values will be described below,
which enable one to exclude some bad configurations.

3) Make sure that the Tanner graph corresponding to the
matrix H̃j , given by (ϕij , pij) values generated up to
now, has minimal ACE not less than a given threshold η.
This can be implemented efficiently using the algorithms
presented in [3], [11]. Go to step 2 in case of failure.

4) Consider all possible vectors c̃ ∈ GF (2)(j+1)p :
wt(c̃) ≤ w. Determine the weights of the associated
output vectors using (1), and find the minimal weight of
the obtained codewords (ĉ|c̃), which is denoted here by
Smin.

5) Repeat steps 2–4 a given number of times, and select
(ϕij , pij) values maximizing Smin. Let d̂j be the ob-
tained maximal value of Smin.

6) Let j := j + 1. If j < t, go to step 2.

Observe that d̂ = minj d̂j gives an upper bound on the mini-
mum distance of the code obtained. Clearly, increasing w, the
weight of input vectors being analyzed, improves the accuracy
of this estimate, but increases also the complexity of the
algorithm. Increasing η in general improves the performance
of the obtained codes, but may also cause the algorithm to fail





23 ∞ ∞ ∞ ∞ ∞ 9 ∞ ∞ ∞ ∞ ∞ 6 ∞ ∞ 21 ∞ 24
0 ∞ ∞ ∞ ∞ ∞ ∞ 26 ∞ ∞ ∞ ∞ ∞ 11 ∞ 16 ∞ 25
27 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 ∞ ∞ ∞ ∞ 24 ∞ 26 ∞ 14
∞ 7 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 5 ∞ ∞ ∞ ∞ 18 19 31 10
∞ 22 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 23 ∞ ∞ ∞ 31 24 3 8
∞ 19 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 29 ∞ ∞ 13 23 28 19
∞ ∞ 18 ∞ ∞ ∞ 28 ∞ ∞ ∞ ∞ ∞ 8 ∞ ∞ 30 18 0
∞ ∞ 16 ∞ ∞ ∞ ∞ 9 ∞ ∞ 16 ∞ ∞ ∞ ∞ 11 20 ∞
∞ ∞ 23 ∞ ∞ ∞ ∞ ∞ 31 ∞ ∞ 8 ∞ ∞ ∞ 17 15 11
∞ ∞ ∞ 22 ∞ ∞ ∞ ∞ ∞ 5 ∞ ∞ 12 ∞ ∞ 25 26 ∞
∞ ∞ ∞ 16 ∞ ∞ ∞ ∞ ∞ ∞ 2 ∞ ∞ 9 ∞ 7 7 24
∞ ∞ ∞ 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 26 ∞ ∞ 19 2 26 ∞
∞ ∞ ∞ ∞ 18 ∞ 20 ∞ ∞ ∞ ∞ ∞ 7 ∞ ∞ 5 12 4
∞ ∞ ∞ ∞ 31 ∞ ∞ 7 ∞ ∞ 1 ∞ ∞ ∞ ∞ 19 16 25
∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ 8 ∞ ∞ 15 ∞ ∞ ∞ 12 27 17
∞ ∞ ∞ ∞ ∞ 7 ∞ ∞ ∞ 1 ∞ ∞ 0 ∞ 21 ∞ 3 21
∞ ∞ ∞ ∞ ∞ 1 ∞ ∞ ∞ ∞ 5 ∞ ∞ 31 ∞ ∞ 7 20
∞ ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞ ∞ 6 ∞ 25 ∞ ∞ 31 18



Fig. 2. Template matrix for rate 1/2 code (Code 1)

to identify the appropriate values of ϕij and pij). In practice
it is sufficient to set w ≈ 5 in order to obtain good codes.

It is possible to impose additional constaints on the values
ϕij and pij generated at step 2 in order to quickly eliminate
some bad configurations. In particular, one can eliminate
length-4 loops in the subgraph of the Tanner graph correspond-
ing to H̃ by enforcing the constraint [10]

(pi1j1 − pi2j1) + (pi3j2 − pi4j2) ̸≡ 0 mod p (2)

for all ik, jk : ϕi1j1 = ϕi4j2 , ϕi2j1 = ϕi3j2 . Furthermore, let us
consider the case of c̃ : wt(c̃) = 1. In this case the vector H̃c̃T

contains non-zero elements in positions ϕij + s(pij + k) mod
ps, i = 1..wj for some j : 0 ≤ j < t and k : 0 ≤ k < p.
The vectors corresponding to different values of k can be
obtained as cyclic shifts of each other. This restricts the set
of possible weights of ĉ vector. If wj is an even integer and
∀i : ϕi+1,j + spi+1,j > ϕi,j + spi,j , this property implies
that the weight of vector ĉT = Ĥ−1H̃c̃T equals either to
W ′

j =
∑wj/2

i=1 (ϕ2i,j + sp2i,j − ϕ2i−1,j − sp2i−1,j) or to
W ′′

j = ps − W ′
j . One can impose constraints W ′

j ≥ S1 and
W ′′

j ≥ S1 for sufficiently large S0, excluding thus from the
code being constucted all codewords having wt(c̃) = 1 and
wt(ĉ) < S1. Similar, but slightly more involved constraints
can be developed for the case of odd wj . These constraints
can be used at step 2 in order to exclude some values ϕij and
pij leading to bad codes. Furthemore, one can represent vector
c̃ as a block vector consisting of subvectors of length p. If c̃(l)

is a vector consisting of c̃ subvectors cyclically shifted by l

positions, then H̃
(
c̃(l)

)T
can be obtained by shifting cyclically

H̃c̃T by ls positions. This allows one to obtain the weight of ĉ
vector by appropriately changing the summation order in (1),
reducing thus the number of different vectors to be considered
at step 4.

In many cases it appears that the template matrix optimized
for one value of p provides quite good performance for other
values as well. This enables one specify a large family of codes
with different length with a single template matrix.

IV. NUMERIC RESULTS

Figures 2 and 3 present template matrices for rate 1/2 codes
obtained with the above algorithm for different node degree
distributions. Optimization of both codes took 40 minutes on
an Athlon-2500 computer. The number z of variable nodes



22 ∞ ∞ ∞ ∞ 19 ∞ ∞ 59 ∞ ∞ 24 ∞ ∞ ∞ 49
14 ∞ ∞ ∞ ∞ ∞ ∞ 42 ∞ 51 ∞ 7 ∞ ∞ ∞ 60
44 ∞ ∞ ∞ ∞ ∞ ∞ 29 ∞ 11 ∞ 51 ∞ ∞ ∞ ∞
∞ 23 ∞ ∞ ∞ 2 ∞ ∞ ∞ 0 ∞ ∞ 34 ∞ ∞ ∞
∞ 51 ∞ ∞ ∞ ∞ ∞ 3 ∞ 25 ∞ ∞ 42 ∞ ∞ 5
∞ 54 ∞ ∞ ∞ ∞ ∞ 46 ∞ 12 ∞ ∞ 23 ∞ ∞ 67
∞ ∞ 6 ∞ ∞ 29 ∞ ∞ ∞ 40 ∞ ∞ 40 ∞ 43 ∞
∞ ∞ 68 ∞ ∞ ∞ ∞ 7 ∞ ∞ 11 ∞ 24 ∞ 14 ∞
∞ ∞ 71 ∞ ∞ ∞ ∞ 36 ∞ ∞ 36 ∞ 54 ∞ ∞ 65
∞ ∞ ∞ 34 ∞ ∞ 51 ∞ ∞ ∞ 12 ∞ ∞ 61 ∞ 69
∞ ∞ ∞ 69 ∞ ∞ ∞ ∞ 34 ∞ 23 ∞ ∞ 44 29 ∞
∞ ∞ ∞ 2 ∞ ∞ ∞ ∞ 69 ∞ 54 ∞ ∞ 71 4 ∞
∞ ∞ ∞ ∞ 1 ∞ 65 ∞ ∞ ∞ 30 ∞ ∞ 36 ∞ ∞
∞ ∞ ∞ ∞ 18 ∞ ∞ ∞ 23 ∞ ∞ 46 ∞ 39 ∞ ∞
∞ ∞ ∞ ∞ 16 ∞ ∞ ∞ 14 ∞ ∞ 20 ∞ 14 36 ∞
∞ ∞ ∞ ∞ ∞ ∞ 33 ∞ 57 ∞ ∞ 50 ∞ ∞ 56 ∞



Fig. 3. Template matrix for rate 1/2 code (Code 2)

connected to the zigzag pattern is assumed to be equal to the
number of check nodes.

Figure 4 presents simulation results illustrating the perfor-
mance of the codes defined by these matrices. Additionally,
it presents the curves corresponding to IEEE 802.16 LDPC
codes [7]. It can be seen that these codes have no error floor
downto FER = 5 · 10−5. The proposed family of codes tend
to outperform the 802.16 ones, especially at high signal-to-
noise ratios. The first family of codes provides up to 0.2 dB
gain compared to the IEEE 802.16 codes.

The proposed construction can be used to obtain codes with
any rate. Figure 5 illustrates the performance of the proposed
family of codes, as well as those defined in IEEE 802.16
specification, at rate 3/4. It can be seen that the proposed
family of codes again provides better performance. However,
it must be recognized that the pure template-based LDPC
codes, similar to those defined in IEEE 802.16, may have other
advantages, like simpler encoding algorithm.

V. CONCLUSIONS

In this paper a method for constructing structured irregular
LDPC codes was presented. The code construction is based on
a block-permutation matrix with additional row permutation.
The parameters of this matrix are derived through an opti-
mization algorithm, which attempts to maximize the estimated
code minimum distance. Provided that sufficient computational
power is available, the proposed algorithm can produce good
estimates of the minimum distance of the code obtained,
providing valuable feedback to the code designer.

The codes constructed with the proposed method were
shown to outperform the pure template-based codes specified
in IEEE 802.16 standard. An important advantage of the
proposed construction is that there are no artificial restrictions
on pij values coming from the regular algebraic LDPC con-
structions (cf. [6], [13]), which cannot be justified in the case
of irregular codes. However, depending on the implementation,
the encoder for the proposed family of codes may have slightly
higher latency than the one of pure template-based codes.
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