
Hybrid Decoding of Interlinked Generalized

Concatenated Codes

Kirill Ivanov, Peter Trifonov

Saint Petersburg Polytechnic University

Email: {ivanov,petert}@dcn.icc.spbstu.ru

Abstract—The problem of efficient decoding of interlinked
generalized concatenated codes and polar subcodes is considered.
A novel decoding algorithm is proposed, which allows one to
significantly reduce the complexity of block sequential decoding
of these codes.

I. INTRODUCTION

Polar codes, introduced in 2008 by E. Arikan, are able

to achieve the capacity of an arbitrary binary memoryless

channel [1]. Low-complexity procedures can be used for their

coding and decoding. However, polar codes show quite poor

performance due to their low minimum distance.

Polar subcodes [2], [3] are a generalization of polar codes

with improved minimum distance. Instead of setting all frozen

symbols to zero, as in the case of classical polar codes, polar

subcodes allow some of the frozen symbols to be a linear

combination of non-frozen ones. These codes can be efficiently

decoded by the algorithms developed for classical polar codes

with minor modifications.

Polar subcodes themselves can be considered as a special

case of the interlinked GCC (IGCC), which are an extension

of generalized concatenated codes. In [3], a construction of

IGCC with outer extended BCH codes was proposed and was

shown to outperform polar subcodes.

One can decode these codes with the block sequential

decoding algorithm [4]. It represents a polar code as a Plotkin

concatenation of some outer codes, and decodes these codes

with maximum likelihood soft list decoders. A priority queue

is used in order to store different paths in the code tree, and

select the most probable one.

Straightforward implementation of this approach is based

on the list Viterbi algorithm for decoding of outer codes.

However, its complexity grows exponentially with the length

of outer codes. In this paper we propose more efficient

techniques for decoding of IGCC with outer extended BCH

codes.

II. BACKGROUND

A. Interlinked Generalized Concatenated Codes

1) Polar subcodes: (n = 2m, k, d) polar subcode is a set

of vectors

cn−1
0 = un−1

0 Am,

where

uji =

ji−1∑

s=0

usVi,s, 0 ≤ i < n− k, (1)

Outer Encoder 0

Outer Encoder 1

Outer Encoder 2

Outer Encoder 3

Inner

Encoder

u
(0)

u
(1)

u
(2)

u
(3)

M
�����

M
�����

M
�����

M
�����

M
�����

M
�����

Figure 1. IGCC encoder

for some ji ∈ {0, . . . , n− 1} , Vi,s ∈ F2, Am = F⊗m, where

F =

(
1 0
1 1

)
. The coefficients Vi,s are selected in such way,

so that any cn−1
0 is also a codeword of some parent (n, k′ >

k, d′ ≤ d) code. Extended primitive narrow-sense BCH codes

were shown to be good candidates for parent codes [3].

2) Generalized concatenated code: Consider a family of

nested inner (n, ki, di) codes Ci : C0 ⊃ C1 ⊃ ... ⊃ Cn−1,

where ki = ki+1 + 1, kn = 0, and a family of outer

(N,Ki, Di) codes Ci over Fq, 0 6 i < n. Let G be a

n × n matrix, such that its rows i, ..., n − 1 generate code

Ci. Encoding with a generalized concatenated code (GCC)

is performed as follows. First, partition a data vector into n

blocks of size Ki, 0 6 i < n. Second, encode these blocks

with codes Ci to obtain codewords (ci,0, ..., ci,N−1). Finally,

multiply vectors (c0,j , ..., cn−1,j), 0 6 j < N , by G to obtain

a GCC codeword.

3) Interlinked GCC: The above described GCC construc-

tion can be extended as follows [3]. Subvectors of a data

vector can be encoded not with codes Ci, but with their cosets

given by Ci +
∑i−1

s=0 u
(i)M (s,i), where M (s,i) ∈ F

Ks

q are

some matrices, as shown in Figure 1. This construction will

be referred to as interlinked GCC (IGCC).

Decoding of IGCC can be performed with the multistage

decoding algorithm [5]. Decoding in cosets of outer codes

can be implemented using standard decoders of Ci, provided

that their input LLRs are appropriately adjusted. IGCC rep-

resentation enables one to use GCC decoding techniques for

other types of error-correcting codes.

C(32, 21)

C0(16, 10) C1(16, 11)

C10(8, 4) C11(8, 7)

Figure 2. Recursive decomposition of code (32, 21, 6)

4) Generalized Plotkin Decomposition: It was shown in [3]

that any (2n, k, d) linear code C has a generator matrix given

by

G =

(
Ik0 0 Ĩ
0 Ik1 0

)

G0 0
G1 G1

G2 G2

 , (2)

where Il is a l × l identity matrix, Gi, i = 0, 1, 2, are some

ki×n matrices, Ĩ is obtained by stacking a (k0−k2)×k2 zero

matrix and Ik2 , where k2 6 k0. Such representation, known

as generalized Plotkin decomposition of code C, essentially

corresponds to an IGCC with outer codes C0 and C1 generated

by G0 and G1, respectively, and inner codes are generated by

rows of polarizing transformation matrix F .

GPD can be applied recursively. Figure 2 presents an ex-

ample of the codes obtained by recursive GPD of a (32, 21, 6)
extended BCH code.

B. Block sequential decoding of polar codes

Block sequential decoding is an improvement of the se-

quential decoding method for polar and IGCC codes [6]. It

recursively applies GPD to a polar code, until one obtains

outer codes which admit efficient maximum likelihood soft

decision list decoding. Let ns be the lengths of the obtained

outer codes CBs
. For example, the extended (32, 21, 6) BCH

code is decomposed into codes with ns = {16, 8, 8}, as shown

in Figure 2.

The decoder maintains a stack (priority queue), where paths

uφs−1
0 are stored together with their scores. At each iteration

the decoder extracts a path with the highest score, constructs

its possible continuations uφs+ns−1
0 , where φs+1 = φs + ns,

computes their scores, and pushes them into the stack. Con-

struction of path continuations reduces to finding a number

of most probable codewords of an outer code, corresponding

to a given vector of log-likelihood ratios. In order to reduce

the complexity, the codewords of outer codes are recovered

one-by-one, as described in [4]. Furthermore, the decoder is

allowed to construct at most L paths of any length φs. L can

be considered as an equivalent of list size in the Tal-Vardy

algorithm [7].

Path score is defined as

M(uφ−1
0 , yn−1

0) = R(uφ−1
0 , yn−1

0) + ψ(φ− 1),

where

R(uφ−1
0 , yn−1

0) = max
un−1
φ

∈F
n−φ
2

logW (n−1)
m (un−1

0 |yn−1
0) + ρ,

where W
(n−1)
m (un−1

0 |yn−1
0) =

∏n−1
j=0 W ((un−1

0)j |yj), ρ does

not depend on uφ−1
0 and ψ(φ−1) is a heuristic function, which

enables one to compare paths of different length stored in the

stack.

The performance and complexity of the block sequential

decoder (BSD) strongly depends on the efficiency of outer

decoders. If an IGCC with outer codes of length N is decoded

with the BSD, one needs to implement low complexity ML list

decoders with list size l for all outer codes, where l is a param-

eter. Any outer decoder should meet following requirements. It

provides two procedures, preprocess and nextCW. The former

one performs some preprocessing of the input LLR vector

ŷns−1
0 . The latter procedure on the i-th call should produce

a pair (c(i), E(c(i), ŷns−1
0)), 0 ≤ i < l, c(i) ∈ CBs

so that the

obtained codewords are arranged in the ascending order of

their ellipsoidal weights, and E(c(i), ŷns−1
0) are the smallest

possible.

III. EFFICIENT DECODING OF OUTER CODES

In this section we present an efficient algorithm, which can

be used for implementation of the outer decoders of short

extended BCH codes. The proposed algorithm is also based

on the GPD.

A. Soft decision decoding of codes via their generalized

Plotkin decomposition

Soft-decision decoding of code C can be performed as

follows. Let y2n−1
0 be the vector of log-likelihood ratios corre-

sponding to the result of transmission of codeword c2n−1
0 ∈ C

over a memoryless channel. The ellipsoidal weight (correlation

discrepancy) of vector z2n−1
0 is defined as

E(z2n−1
0 , y2n−1

0) =

2n−1∑

i=0
(−1)zi 6=sgn yi

|yi|.

Maximum likelihood decoding is equivalent to finding

ĉ = argmin
c∈C

E(c, y2n−1
0).

Let

ỹi = Q(yi, yi+n) = sgn(yi) sgn(yi+n)min(|yi|, |yi+n|), (3)

0 ≤ i < n, and let c̃ = x̃G0 be a codeword of C0. Let us

further define

yi = P (c̃i, yi, yi+n) = (−1)c̃iyi + yi+n, 0 ≤ i < n. (4)

Let c̃ be an element of C1 + x̃G2.

Lemma 1: For any ĉ = (c̃ + c|c)

E(ĉ, y2n−1
0) = E(c̃, ỹ) + E(c, y)

Proof: It is sufficient to prove the statement for n = 1,

so we can drop subscripts i. It is also sufficient to consider

the case of c̃ = c = 0. Consider the following cases:

• y0, y1 > 0: It can be seen that ỹ, y > 0, so E(0, ỹ) =
E(0, y) = E((0|0), (y0|y1)) = 0.

• y0, y1 < 0: One obtains ỹ > 0, y = y1 + y0 < 0, so

E(0, ỹ) = 0, E(0, y) = E((0|0), (y0|y1)) = |y0|+ |y1|.
• y0 > 0 > y1: One obtains E(0, ỹ) = min(|y0|, |y1|),

and E(0, y) =

{
|y0 + y1|, if |y1| > |y0|

0 otherwise.
In both cases

E(0, ỹ) + E(0, y) = E(0, y0) + E(0, y1)
• The case of y1 > 0 > y0 can be shown in a similar way.

Hence, the maximum likelihood decoding problem for code C
can be equivalently stated as

ĉ = (c̃+ c|c) = arg max
c̃∈C0

c∈C1+ũG2

(E(c̃, ỹ) + E(c, y)) (5)

It can be verified using the above lemma that the function

R(uφ−1
0 , yn−1

0), which is used in the block sequential decoding

algorithm, can be calculated as

R(u
φs+1−1
0 , yn−1

0) = R(uφs−1
0 , yn−1

0)−E(uφs+ns−1
φs

, ŷns−1
0),

where ŷns−1
0 is recursively computed from the received LLRs

as follows. Let Bs be the label of the s-th outer code in the

GPD tree (see Figure 2). Then

ŷi = T (Bs, y
n−1
0),

where

T (B.0, yn−1
0) =Q(T (B, y

n/2−1
0), T (B, yn−1

n/2))

T (B.1, yn−1
0) =P (c(B.0), T (B, y

n/2−1
0), T (B, yn−1

n/2))

T (∅, yn−1
0) =yn−1

0 .

Here application of functions Q and P to vectors denotes

the vector obtained by their elementwise application to the

arguments, and c(B.0) denotes the corresponding codeword of

the code CB.0.

B. Hybrid decoding algorithm

We propose a novel algorithm for decoding of linear codes,

which can be considered as a generalization of the classical

method for decoding of codes obtained via the Plotkin con-

struction.

Consider a linear (N = 2M , k, d) code C with generator

matrix G. Let G0 and G1 be the generator matrices of second

order outer codes C0,C1 obtained by applying the GPD to

code C. Let us assume that list decoders for C0 and C1 are

available. Such decoders may be obtained either by recursive

application of the below described algorithm, or using some

other techniques, e.g. list Viterbi decoder [8]. The proposed

approach makes use of one instance of the decoder for code

C0 and l instances of the decoder for code C1.

Given a vector of log-likelihood ratios yN0 , a list of (ap-

proximately) most probable codewords of C can be obtained

by computing ỹi = Q(yi, yi+N/2), 0 ≤ i < N/2, finding

most probable codewords c̃(j) = ũ(j)G0 ∈ C0, 0 ≤ j < l,
computing

y
(j)
i = (−1)(ũ

(j) ĨG2)iP (c̃
(j)
i , yi, yi+N/2),

and decoding each y(j) in code C1 to obtain c(j,tj) ∈ C1, 0 ≤
tj < l. Finally, one should construct codewords (c̃(j)+c(j,tj)+
ũ(j)ĨG2, c

(j,tj) + ũ(j)ĨG2) ∈ C and select l of them with the

smallest values of E(c̃(j), ỹ)+E(c(j,tj), y(j)). Observe that it

may happen that the obtained list does not contain all l most

probable codewords of C, since some of them may correspond

to codewords c̃(j) ∈ C0, j ≥ l. The probability of such event

decreases with l and increases with the rate of C0.

The algorithm can be further simplified. Since the block

sequential decoding algorithm requires obtaining codewords

of outer codes one-by-one, it is possible to construct c(j,tj) on

demand.

Let us assume that tj codewords of C1 have been obtained

corresponding to some c̃(j). Let ej be a lower bound on the

ellipsoidal weight of a codeword of code C, which corresponds

to c̃(j) ∈ C0 and c(j,tj) ∈ C1. It can be seen from Lemma 1

that

ej =

{
E(c̃(j), ỹ), tj = 0

E(c̃(j), ỹ) + E(c(j,tj−1), y(j)), tj > 0.

The proposed algorithm is presented at Figure 3.

PreprocessHybrid subroutine performs data structures ini-

tialization and preprocessing of log-likelihood ratios corre-

sponding to code C0. In the NextCWHybrid procedure the

index q minimizing (E(c̃(q), ỹ) + E(c(q,tq), y(q))) is found

and corresponding codeword c with its ellipsoidal weight w
is returned. Preprocess(Ci, y) denotes a call to the cor-

responding procedure of code Ci decoder, where y is a

log-likelihood ratios vector. NextCW (Ci, y) returns a pair

(c(j), E(c(j), y)), 0 ≤ j < l, c(j) ∈ Ci and additionally

a vector of information symbols u(j). If the element pj
of length-l array p is zero, the decoder of code C1 cor-

responding to codeword c̃(j) of code C0 has returned less

than l codewords. Thus, one should consider only codewords

c̃(j) corresponding to pj = 0. If w̃(k) is the minimum

weight found among the pairs of codewords (c̃(j), c(j,tj)), 0 ≤
j < k and w̃(k) < E(c̃(k+1)), one does not need to

compute c(k+1,0) and c̃(k+2). In order to implement this

approach, the auxiliary array f of length l is used, where

fj =

0, if c̃(j) was not obtained yet

1, if c̃(j) was already obtained and c(j,0) was not

2, otherwise.
The complexity of the proposed decoding algorithm depends

on the complexities of the decoders of codes Ci. Let the

complexities of the preprocessing and codeword recovery

algorithms for these codes be fi(N, l), bi(N, l), respectively.

The PreprocessHybrid procedure consists of ỹ calculation,

their preprocessing in code C0 decoder and arrays initial-

ization. Hence, its complexity is O(N + f0(N, l) + l). The

NextCWHybrid procedure complexity is a random variable,

PREPROCESSHYBRID(C, yN−1
0)

1 ỹi = Q(yi, yi+N/2), 0 ≤ i < N/2
2 PREPROCESS(C0, ỹ)
3 for j ← 0 to l − 1
4 do tj ← 0; fj ← 0; pj ← 0

NEXTCWHYBRID(C, yN−1
0)

1 w ←∞
2 for j ← 0 to l − 1
3 do if fj = 0
4 then (c̃(j), ũ(j)) = NEXTCW(C0, ỹ)
5 Ej = E(c̃(j), ỹ); ĉ(j) = ũ(j)ĨG2; fj ← 1
6 if fj = 1
7 then if Ej ≤ w
8 then for i← 0 to N

2 − 1

9 do y
(j)
i ← P (c̃

(j)
i , yi, yi+N

2
)

10 y
(j)
i ← (−1)ĉ

(j)
i y

(j)
i

11 PREPROCESS(C1, y
(j))

12 (c(j,0), ũ(j)) = NEXTCW(C1, y
(j))

13 ej ← Ej + E(c(j,0), y(j))
14 fj ← 2
15 else break

16 if fj = 2 ∧ pj = 1 ∧ ej ≤ w
17 then w← ej; q ← j
18 c← (c̃(q) + c(q,tq) + ĉ(q); c(q,tq) + ĉ(q))
19 tq ← tq + 1
20 if tq < l
21 then c(q,tq) = NEXTCW(C1, y

(q))
22 eq ← Eq + E(c(q,tq), y(q))
23 else pq ← 1
24 return c

Figure 3. Hybrid decoding algorithm

which depends on the noisy vector being decoded and decod-

ing error probability of C0. In the worst case, all l codewords

c̃(j) of code C0 are obtained and corresponding log-likelihood

ratios y(j) and codewords c(j,0) of code C1 are calculated.

This goes into the O(l(b0(N, l) + N + f0(N, l) + b1(N, l)))
complexity. However, in most cases there are only few calls

to Ci decoders procedures.

Although the proposed algorithm can be applied to any

code, its efficiency depends on the parameters of the codes

arising in the GPD of the considered code. Extended primitive

narrow sense BCH codes are known to be subcodes of Reed-

Muller codes [9]. This ensures that the dimension of C0 and

its (list) decoding error probability are sufficiently small, so

that with high probability all l most probable codewords of C
can be obtained from l most probable codewords of C0.

C. Decoding of second order outer codes

The above described decoding algorithm can be applied

recursively. This corresponds to recursive GPD (see Figure

2). The recursion should be terminated as soon as the GPD

Table I
OUTER EBCH CODES

C
C0 C1

Parameters Decoding Parameters Decoding

(32, 8) (16,2) (1) (16,6) (2)

(32, 10) (16,4) (1) (16,6) (2)

(32, 11) (16,5) (1) (16,6) (2)

(32, 15) (16,4) (1) (16,11) GR

(32, 19) (16,8) GR (16,11) GR

(32, 21) (16,10) GR (16,11) GR

(32, 24) (16,9) GR (16,15) (3)

(32, 26) (16,11) GR (16,15) (3)

(32, 27) (16,11) GR (16,16) (3)

(32, 28) (16,13) GR (16,15) (3)

(32, 29) (16,13) GR (16,16) (3)

results in codes, which admit efficient decoding. Alternatively,

generic decoding algorithms (e.g., tree-trellis Viterbi algorithm

[8], list box-and-match algorithm [10]) can be used.

The following techniques can be used for decoding of short

second order outer codes arising in the GPD.

1) Codes of dimension k ≤ 2 can be decoded by exhaustive

enumeration of all codewords.

2) First order Reed-Muller codes can be decoded using the

fast Hadamard transform [11]. The same approach can

be used for codes which can be represented as a union

of a few cosets of a first order Reed-Muller code.

3) Single parity check and rate-1 codes can be decoded

by flipping a few least reliable bits in a hard decision

vector.

Table I presents various outer codes of length 32 arising in

the GPD of an (1024, 512, 28) IGCC presented in [3], as well

as the corresponding decoding methods from the above list.

Letters GR correspond to recursive application of the hybrid

decoding algorithm or a generic decoder.

IV. NUMERICAL RESULTS

In this section we present numeric results illustrating the

complexity and performance of the proposed algorithm. LTE

turbo codes, polar codes with 16-bit CRC (Arikan-CRC)

[12], polar subcodes and IGCC codes were considered. Polar

subcodes and IGCC codes were constructed as described in

[3]. Block sequential decoding algorithm [4] (BSD(s)) was

used for decoding of polar codes with CRC, polar subcodes

and IGCC, where 2s is the minimal length of outer codes

which are decoded using a maximum likelihood decoding

algorithm. We consider the following algorithms for decoding

of such outer codes:

• tree-trellis list Viterbi algorithm [8].

• the proposed decoding algorithm, where second order

outer codes are decoded with the tree-trellis list Viterbi

algorithm.

• the proposed decoding algorithm, which is applied re-

cursively, until codes from the list in Section III-C are

obtained.

Figures 4 and 5 illustrate the performance and the decoding

complexity of various codes. The complexity is expressed in

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

F
E

R

Eb/N0, dB

IGCC, BSD(5), L=32, Hybrid+Hybrid
IGCC, BSD(5), L=32, Hybrid+Viterbi

IGCC, BSD(5), L=32, Viterbi
Polar subcode, L=32, Hybrid+Hybrid

Polar subcode, BSD(3), L=32
Polar subcode, BSD(3), L=256

LTE Turbo code
Arikan-CRC, BSD(3)

Figure 4. Performance of (1024, 512) codes

10
3

10
4

10
5

10
6

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

S
u

m
m

a
ti
o

n
s
 a

n
d

 c
o

m
p

a
ri
s
o

n
s

Eb/N0, dB

IGCC, BSD(5), L=32, Hybrid+Hybrid
IGCC, BSD(5), L=32, Hybrid+Viterbi

IGCC, BSD(5), L=32, Viterbi
Polar subcode, L=32, Hybrid+Hybrid

Polar subcode, BSD(3), L=32
Polar subcode, BSD(3), L=256

Arikan-CRC, BSD(3)

Figure 5. Decoding complexity of (1024, 512) codes

terms of the average number of summation and comparison

operations. It can be seen that the hybrid decoding algorithm

provides almost the same performance as tree-trellis Viterbi

algorithm, but has much lower complexity. Both algorithms

allow IGCC to outperform polar subcodes and polar codes

with CRC. It can be also seen that the IGCC with decoder

list size L = 32 outperforms the polar subcode with L =
256. However, this comes at the expense of two times more

arithmetic operations in the high SNR region.

V. CONCLUSION

In this paper a low-complexity algorithm for decoding of

interlinked generalized concatenated codes is proposed. The

algorithm is based on the generalized Plotkin decomposition

of the considered codes. It allows one to achieve significant

performance gain with respect to polar subcodes and polar

codes with CRC.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE

Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, July
2009.

[2] P. Trifonov and V. Miloslavskaya, “Polar codes with dynamic frozen
symbols and their decoding by directed search,” in Proceedings of IEEE

Information Theory Workshop, September 2013, pp. 1 – 5.
[3] ——, “Polar subcodes,” IEEE Journal on Selected Areas in Communi-

cations, vol. 34, no. 2, pp. 254–266, February 2016.
[4] G. Trofimiuk and P. Trifonov, “Block sequential decoding of polar

codes,” in Proceedings of International Symposium on Wireless Com-
munication Systems, 2015, pp. 326–330.

[5] U. Wachsmann, R. F. H. Fischer, and J. B. Huber, “Multilevel codes:
Theoretical concepts and practical design rules,” IEEE Transactions on
Information Theory, vol. 45, no. 5, pp. 1361–1391, July 1999.

[6] V. Miloslavskaya and P. Trifonov, “Sequential decoding of polar codes,”
IEEE Communications Letters, vol. 18, no. 7, pp. 1127–1130, 2014.

[7] I. Tal and A. Vardy, “List decoding of polar codes,” in Proceedings of
IEEE International Symposium on Information Theory, 2011, pp. 1–5.

[8] M. Roder and R. Hamzaoui, “Fast tree-trellis list Viterbi decoding,”
IEEE Transactions on Communications, vol. 54, no. 3, pp. 453–461,
March 2006.

[9] T. Kasami, S. Lin, and W. Peterson, “New generalizations of the Reed-
Muller codes part I: Primitive codes,” IEEE Transactions on Information

Theory, vol. 14, no. 2, pp. 189–199, March 1968.
[10] P. A. Martin, D. Taylor, and M. P. Fossorier, “Soft-input soft-output

list-based decoding algorithm,” IEEE Transactions on Communications,
vol. 52, no. 2, pp. 252–262, February 2004.

[11] R. R. Green, “A serial orthogonal decoder,” JPL Space Program Sum-
mary, vol. 4, no. 31-39, pp. 241–253, 1966.

[12] J. Ha, J. Kim, D. Klinc, and S. W. McLaughlin, “Rate-compatible
punctured low-density parity-check codes with short block lengths,”
IEEE Transactions On Information Theory, vol. 52, no. 2, February
2006.

