
Hybrid Interpolation Algorithm for Algebraic Soft
Decision Decoding of Reed-Solomon Codes

Vera Miloslavskaya, Peter Trifonov
Saint-Petersburg State Polytechnic University, Russia,

{veram,petert}@dcn.ftk.spbstu.ru

Abstract—The problem of bivariate interpolation in algebraic
soft decision decoding of Reed-Solomon codes is considered. Re-
encoding transformation for the case of layered interpolation
algorithm is derived. A novel hybrid interpolation algorithm
based on layered, Lee-O’Sullivan and Kötter algorithms is
proposed. The proposed algorithm demonstrates considerable
complexity reduction compared to the case of iterative inter-
polation algorithm.

I. INTRODUCTION

Interpolation is known to be the most computationally
demanding step in the Kötter-Vardy algorithm [1]. In this
paper we propose a novel reduced complexity hybrid method
for solving this problem. The proposed approach is based
on the layered algorithm [2] integrated with re-encoding
transformation [3]. Some parts of the interpolation problem
are solved with Lee-O’Sullivan [4] and Kötter methods [5],
[6].

The paper is organized as follows. Section II introduces the
necessary definitions, notation and algorithms. Re-encoding
transformation for the case of layered interpolation algorithm
is described in Section III. The novel interpolation method is
presented in Section IV. Numeric results are given in Section
VI. Finally, some conclusions are drawn.

II. BACKGROUND

(n, k, n−k+1) Reed-Solomon code over field F is defined
as a set of vectors (f(x0), . . . , f(xn−1)), where f(x) =∑k−1

i=0 fix
i, fi ∈ F, is the message polynomial, and xi ∈ F

are some distinct values called code locators.

A. Kötter-Vardy algorithm

The Kötter-Vardy algorithm involves the following steps [1]:
1) Construction of the root multiplicity matrix M from the

received noisy sequence. This step can be implemented
in many different ways, cf. [1], [7], [8], [9].

2) [Interpolation] Construction of a bivariate polynomial
V (x, y) with the smallest possible (1, k − 1)-weighted
degree, having roots (xi, yj) of multiplicity Mi,j , i =
0, . . . , n − 1, j = 0, . . . , |F| − 1. That is, all its partial
Hasse derivatives of total order less than Mi,j at points
(xi, yj) should be equal to zero.

3) [Factorization] Finding all polynomials f (i)(x), such
that V (x, f (i)(x)) = 0 and deg f (i)(x) < k. An efficient
algorithm for solving this problem was given in [10].

4) Construction of codewords (f (i)(x0), . . . , f
(i)(xn−1))

and selection of the most probable one among them.

Interpolation is the most computationally demanding
stage of this method. Let IM be the ideal of polynomials
having roots of multiplicity not less than Mi,j at the points
(xi, yj), i = 0, . . . , n− 1, j = 0, . . . , |F| − 1. Let us introduce
the (1, t)-weighted degree lexicographic term ordering as
xayb ≺t x

AyB ⇔ (a+bt < A+Bt)∨((a+bt = A+Bt)∧(b <
B)). Given a polynomial Q(x, y) : LTQ(x, y) = axbyc,
where LT is the leading term of Q(x, y) with respect to
≺k−1, we define xdegQ(x, y) = b and ydegQ(x, y) = c.
The desired polynomial V (x, y) can be found in a
Gröbner basis of IM constructed with respect to ≺k−1

[11]. It is possible to show that any such Gröbner
basis contains a polynomial Q(x, y): LTQ(x, y) = yρ

[12]. The standard technique used in the design of fast
bivariate interpolation algorithms is to consider only the
module IM,ρ = {Q(x, y) =

∑ρ
t=0 qt(x)y

t|Q(x, y) ∈ IM},
and construct its Gröbnber basis, which is also
a Gröbner basis of IM . Given some polynomials
Pt(x, y) =

∑ρ
s=0 pt,s(x)y

s, let [P0(x, y), . . . , Pρ(x, y)] =
{Q(x, y) =

∑ρ
t=0 at(x)Pt(x, y)|at(x) ∈ F[x]} be the module

generated by them.

B. Lee-O’Sullivan algorithm

The algorithm presented in [4] solves the interpolation
problem by constructing a basis of IM,ρ, and transforming
it into a Gröbner one with a multidimensional generalization
of the Euclidean algorithm. It proceeds by decomposing the
root multiplicity matrix as M =

∑θ
s=0M

(s), where M (s)

are binary matrices with at most one non-zero element in
each row. For each M (s) we define a set of points Gs as
the set

{
(xi, yj) ∈ F2 |M (s)

i,j = 1
}

. Observe that each set Gs

contains points (xi, yj) with distinct xi. For arbitrary set A of
points (xi, yj) we define {A}x = {i|(xi, yj) ∈ A}. The Lee-
O’Sullivan algorithm proceeds with construction of a Gröbner
basis of IM as follows.

1) Let B = (), s = 0.
2) Compute us(x) =

∏
i∈{Gs}x

(x − xi)mi , where mi =

max
0≤j≤|F|−1

θ∑
t=s

M
(t)
i,j , and an interpolation polynomial

ws(x), such that ws(xi) = yj for all (xi, yj) ∈ Gs.

Compute

gs(x, y) = us(x)
s−1∏
t=0

(y − wt(x)). (1)

3) Construct a Gröbner basis B̂ of the module
{Q(x, y) + a(x)gs(x, y)|Q(x, y) ∈ [B]} using the
multidimentional Euclidean algorithm (see Reduce in
[13]). Let B = B̂. Assume without loss of generality
that ydegBi(x, y) = i.

4) If s > θ and xdegBs(x, y) = 0, then B is Gröbner basis
of IM . Otherwise, let s = s+ 1 and go to step 2.

C. Iterative interpolation algorithm (IIA)

Given a Gröbner basis B of a module N , the Kötter
interpolation algorithm [5], [6] transforms it into a Gröbner
basis of another module N ′ ⊂ N , such that all Q(x, y) ∈ N ′

have a additional common root (α, β) of multiplicity at least
m. This is implemented by performing the following steps for
all non-negative j1, j2 : j1 + j2 < m:

1) For each polynomial Bi(x, y) compute its Hasse deriva-
tive σi of order (j1, j2) at point (α, β).

2) Let i0 be the index of the smallest polymomial Bi(x, y)
with non-zero σi

3) Let Bi(x, y) = Bi(x, y)− σi

σi0
Bi0(x, y) for all i ̸= i0.

4) Let Bi0(x, y) = Bi0(x, y)(x− α).

D. Layered interpolation algorithm

Layered interpolation algorithm described in [2] is based
on the binary decomposition of the root multiplicity matrix
elements. The root multiplicity matrix can be represented as

M =
m∑

h=0

2hM (h),

where m = maxi,j⌊logMi,j⌋, and M (h) are binary matrices.
We define the h-th layer of interpolation points as Lh ={
(xi, yj) ∈ F2 |M (h)

i,j = 1
}

.

Furthermore, each matrix M (h) can be represented as
M (h) =

∑θh
s=0M

(h,s), where each row of the matrix
M (h,s) contains at most one non-zero element. This in-
duces a decomposition of layer Lh into sets Gs, s =
0, . . . , θh. For each set Gs one can construct the ideal
IM(h,s) = {Q(x, y)|Q(xi, yj) = 0, (xi, yj) ∈ Gs}. The
ideal of polynomials having roots in layer Lh, i.e. IM(h) =
{Q(x, y)|Q(xi, yj) = 0, (xi, yj) ∈ Lh}, can be obtained as

IM(h) =

θh∏
s=0

IM(h,s) . (2)

The ideal of polynomials having roots of multiplicities given
by M can be obtained as IM = Jm, where

Jh+1 = KhIM(m−h−1) ,Kh = J2
h, J0 = IM(m) , (3)

and I2 = I · I . It is based on the observation that the
multiplicity of roots of a product of two polynomials is
given by the sum of multiplicities of their roots. Let ρh be

the smallest integer such that a Gröbner basis of Jh,ρh
is

also the one for Jh. Observe that Jh,ρh
= IW (h),ρh

, where
W (h) =

∑h
t=0 2

tM (m−t).
An efficient algorithm for construction of a Gröbner basis

of a product of two zero-dimensional ideals IM1 and IM2 was
presented in [13]. This algorithm takes as input two Gröbner
bases (P0(x, y), . . . , Pρ1(x, y)) and (S0(x, y), . . . , Sρ2(x, y))
of modules IM1,ρ1 and IM2,ρ2 , such that these bases are also
Gröbner bases of IM1 and IM2 , and employs the multidimen-
sional Euclidean algorithm to construct a sequence of Gröbner
bases B(t+1), t = 0, 1, . . . , of modules

N (t+1) =
{
Q(x, y) + a(x)Q̃t(x, y)|Q(x, y) ∈ N (t)

}
, (4)

where Q̃t(x, y) are randomly chosen polynomials in IM1IM2 ,
and N (0) is a module with a Gröbner basis given by

Qj(x, y) = Pj−ij (x, y)Sij (x, y), j = 0, . . . , ρ1 + ρ2, (5)

for some ij . This sequence converges rapidly to a Gröbner
basis of IM1+M2

= IM1
IM2

. The convergence criterion is
given by

∆(B(t)) = ∆M ′ , (6)

where M ′ =M1 +M2, and

∆M ′ =
n−1∑
i=0

|F|−1∑
j=0

M ′
i,j(M

′
i,j + 1)

2
,∆(B) =

|B|−1∑
i=0

xdegBi(x, y).

By abuse of notation, we will denote this operation as multi-
plication of modules IM1,ρ1 and IM2,ρ2 .

E. Re-encoding

The re-encoding transformation [3] is based on the change
of variables

z =
y − f(x)
ϕ(x)

, (7)

where ϕ(x) =
∏

i∈{R}x
(x − xi), and f(x) is the smallest

degree polynomial s.t. f(xi) = yj for all (xi, yj) ∈ R. The
set of re-encoding locators R consist of k points (xi, yj) with
distinct xi and highest possible Mi,j .

This transformation enables one to eliminate a large fixed
factor of the interpolation polynomial V (x, y), drastically
reducing thus the dimension of the problem. It was initially
presented in the context of IIA, and later extended to the case
of Lee-O’Sullivan algorithm [14]. IIA-based implementation
of the re-encoding requires one to use the modified interpola-
tion points (xi, zj), where

zj =

{
(yj − f(xi))/ϕ(xi), i /∈ {R}x ,
(yj − f(xi))/ϕ′(xi), i ∈ {R}x , (xi, yj) /∈ R,

(8)

and a modified expression for Hasse derivatives for the second
case. For details, see [3]. One of contributions of this paper
is a generalization of this approach to the case of layered
interpolation algorithm.

III. RE-ENCODING TRANSFORMATION FOR LAYERED
INTERPOLATION ALGORITHM

Consider construction of IM(h) . Assume that the h-th layer
is decomposed into sets Gs, s = 0, . . . , θh. The basis of IM(h)

is given by (1). After change of variables (7), it becomes

B̂s(x, z) = us(x)
s−1∏
t=0

(ϕ(x)z + f(x)− wt(x)), s = 0, . . . , ρh.

(9)
Assume that G0 contains all re-encoding locators of the h-th

layer. This implies that f(x)−w0(x) is divisible by ψ(h)(x) =∏
i∈{R∩Lh}x

(x − xi). Observe that both u0(x) and ϕ(x) are
divisible by ψ(h)(x). Therefore, ψ(h)(x) is a common factor
of all B̂s(x, z).

From (3) it follows that all polynomials in Jh,ρh
are

divisible by Ψ(h)(x), where

Ψ(h)(x) =

h∏
t=0

(ψ(m−t)(x))2
t

=
∏

(xi,yj)∈R

(x− xi)W
(h)
i,j .

Eliminating this common factor one obtains another module
Ĵh,ρh

. Observe that Ĵm,ρm corresponds to the same instance
of the interpolation problem as IM,ρ.

Let LTQ(x, y) = axbyc for some Q(x, y) ∈ Jh,ρh
. After

the above described transformations and switching to ≺−1,
one obtains

Q̂(x, z) =
Q(x, ϕ(x)z + f(x))

Ψ(h)(x)
,

such that LT Q̂(x, z) = âxck+b−τhzc, where

τh = degΨ(h)(x) =
∑

(xi,yj)∈R

h∑
t=0

2tM
(m−t)
i,j .

This implies that for a Gröbner basis B̂(h) of Ĵh,ρh

∆̂W (h) = ∆(B̂(h)) =
∑ρh

t=0 xdeg B̂
(h)
t (x, y) =∑ρh

t=0(xdegB
(h)
t (x, y) + tk − τh) = ∆W (h) + kρh(ρh +

1)/2− (ρh + 1)τh.
Hence, one can apply the re-encoding transformation while

constructing the Gröbner bases for each layer Lh, and proceed
according to (3), replacing the convergence criterion (6) with
the above expression.

IV. HYBRID INTERPOLATION ALGORITHM

It turns out that a straightforward implementation of the
ideal construction method given by (3) is extremely inefficient
if some of M (h) contain just a few 1’s. Therefore we propose
to combine the layered interpolation algorithm with other
approaches for construction of Jh+1 out of Jh.

A. Convergence of the ideal multiplication algorithm

In what follows, we show that the complexity of the
randomized ideal multiplication algorithm given by (4) sub-
stantially depends on the properties of ideals being multiplied.
The complexity of construction of a Gröbner basis of IM1IM2

using this approach depends on the length of the sequence

of submodules N (0) ⊃ N (1) ⊃ . . . having Gröbner bases
B(0),B(1), . . . , such that ∆(B(i)) > ∆M1+M2 . It increases
with N = ∆(B(i)) − ∆M1+M2 . The number of operations
needed by the multidimentional Euclidean algorithm also
increases with N .

For the sake of simplicity, consider the case of fixed root
multiplicity (the case of list decoding). It was shown in [13]
that in the case of Mi = riH , i = 1, 2, where ri ∈ N, H is a
n× |F| matrix containing exactly one 1 in each row

N ≈ n

2

(
ρ2

ρ1 + 1
r1(r1 + 1) +

ρ1
ρ2 + 1

r2(r2 + 1)− 2r1r2

)
,

where ρi are maximal y-degrees of polynomials in the bases
of the ideals being multiplied. It was shown in [6] that

ρi(ρi + 1) ≤ nri(ri + 1)/(k − 1) < (ρi + 1)(ρi + 2),

i.e. ρi + 1 ≈ αri for some α. Hence,

N ≈ n

2α
((α− 1)(r1 + r2)− 2) .

In the case of r1 = r2 = r/2 it becomes

N ≈ ν

α
((α− 1)r − 1) . (10)

Similar value is obtained for r1 = r, r2 = 1. This implies that
the complexity of ideal multiplication is approximately the
same in both cases. In the case of variable root multiplicity
the complexity of computing Gröbner bases of Kh = J2

h and
Jh+1 = KhIM(m−h−1) is also approximately the same. Most
of the matrices M (h) are sparse, so the number of operations
needed to construct Jh+1 from Kh via ideal multiplication is
inproportionally high.

Consider the case of coprime ideals IM1 and IM2 , where
Mi = rHi, and H = H1 +H2 contains exactly one 1 in each
row. For the sake of simplicity assume that ρ1 = ρ2 = ρ,
and matrices M1, M2 have ν nonzero elements. Hence,
∆M1

= ∆M2
= νr(r + 1)/2 and ∆M1+M2

= νr(r + 1).
Let (P0(x, y), . . . , Pρ(x, y)) and (S0(x, y), . . . , Sρ(x, y)) be
Gröbner bases of IM1

and IM2
, such that LTPi(x, y) =

βix
piyi, LTSi(x, y) = γix

siyi. It was shown in [13] that
pi ≈ si ≈ lr− j(k−1), where lr ≈ ((k−1)ρ(ρ+1)+νr(r+
1))/(2(ρ+1)). Assuming that the Gröbner basis B(0) of N (0)

is given by (5), one obtains ∆(B(0)) =
∑2ρ

j=0 xdegQj(x, y) ≈
ν
α (r + 1)(2αr − 1). Hence,

N ≈ ν

α
(r + 1)(αr − 1). (11)

Comparing (11) and (10) one can see that the convergence of
the randomized ideal multiplication algorithm is much slower
in the case of coprime ideals. This implies that one should
avoid multiplying the coprime ideals, as well as the ideals IM1

and IM2 with substantially different M1 and M2. Namely, one
should avoid computing Jh+1 = KhIM(m−h−1) . Furthermore,
the method for construction of IM(h) based on (2) should be
replaced with a more efficient approach.

These problems will be addressed in the following subsec-
tions, where some modifications to the layered interpolation
algorithm will be presented.

veram
Note
\nu??????

B. Constructing a basis for Ĵ0,ρ0

In most cases matrix M (m) contains many non-zero rows.
We propose to employ a modified Lee-O’Sullivan algorithm
to construct a Gröbner basis of Ĵ0,ρ0 , and use it as a starting
point of the layered algorithm. For brevity, the layer index m
will be dropped in the subsequent derivations.

Assume that the set G0 contains all re-encoding locators
found in layer L. Then after the re-encoding transformation
the basis polynomials (9) can be represented as

B̂0(x, z) =
∏

i∈{L\R}x

(x− xi), (12)

B̂s(x, z) = us(x)
ϕ(x)z + f(x)− w0(x)

ψ(h)(x)
as(x, z) = ∑

(xi,yj)∈R\G0

yjλR\G0
(x)

ϕ′(xi)(x− xi)
−

∑
(xi,yj)∈G0\R

yjλG0\R(x)

u′0(xi)(x− xi)
+

∑
(xi,yj)∈R∩G0

yj

λR\G0
(x)

ϕ′(xi)
− λG0\R(x)

u0
′(xi)

x− xi

us(x)as(x, z), s ≥ 1.

where as(x, z) =
∏s−1

t=1 (ϕ(x)z+ f(x)−wt(x)) and λA(x) =∏
(xi,yj)∈A(x−xi). Observe that these expressions are simpler

than the ones given in [14].
These polynomials should be processed as described in

Section II-B using ≺−1. The termination criterion at step 4
should be changed to

xdeg B̂s(x, z) = sk − τm. (13)

This approach requires ρ ≈ θ calls to the multidimensional
Euclidean algorithm, while each coprime ideal multiplication
operation in (2) requires usually more than one call to it, and
θ ideal multiplications should be performed.

C. Incrementing root multiplicities

The analysis given in Section IV-A implies that computing
a Gröbner basis of Jh+1 = KhIM(m−h−1) and Kh = J2

h

via ideal multiplication requires approximately the same num-
ber of operations. This is not efficient, since most matrices
M (m−h−1) are sparse. Therefore we propose to implement this
step using IIA [3]. Before applying it, one should process the
points (xi, yj) ∈ R ∩ Lh. Without re-encoding, one could in-
crement the multiplicities of these roots by multiplying Kh,ρ′

h

(for some suitable ρ′h) by Th =
[
ψ(h)(x), y − wh,0(x)

]
, where

wh,0(xi) = yj for all (xi, yj) ∈ R ∩ Lh. Observe that this
basis is a Gröbner one with respect to ≺k−1. After the change
of variables it becomes

[
ψ(h)(x), ϕ(x)z + f(x)− wh,0(x)

]
=[

ψ(h)(x), ϕ(x)z
]
. Eliminating the common factor ψ(h)(x), one

obtains the module T̂h = [1,
∏

(xi,yj)∈R,M
(h)
i,j =0

(x − xi)z].

Hence, Ĵ ′
h+1 = K̂h,ρ′

h
T̂h, where K̂h,ρ′

h
is the module obtained

from Kh,ρ′
h

by re-encoding. Since the basis of T̂h contains just
two very simple polynomials, the randomized multiplication
algorithm given by (4) can handle this case very efficiently.

HYBRIDINTERPOLATION(M)
1 R←

{
argmax(xi,yj)Mi,j

}
, |R| = k

2 m← ⌊logmaxi,j Mi,j⌋
3 Let M =

∑m
h=0 2

hM (h),M
(h)
i,j ∈ {0, 1}

4 B ← INITIALMODULE(M (m), R)
5 for h← m− 1 to 0
6 do B ← MERGE(B,B)
7 G ← (1,

∏
(xi,yi)∈R,M

(h)
i,j =0

(x− xi)z)
8 B ← MERGE(B,G)
9 for (xi, yj) /∈ R

10 do for j1, j2 : j1 + j2 + 1 =
∑m

t=h 2
t−hM

(t)
i,j

11 do ρ← |B| − 1
12 σt ← HASSE(Bt, xi, yj , j1, j2, R), t = 0, .., ρ
13 t0 ← argmint:σt ̸=0 wdeg(1,−1) LTQt(x, z)
14 if t0 = ρ
15 then Bρ+1 ← Bρϕ(x)z, ρ← ρ+ 1
16 σρ ← HASSE(Bρ, xi, yj , j1, j2, R)
17 Bt(x, z)← Bt(x, z)− σt

σt0
Bt0(x, z), t ̸= t0

18 Bt0(x, z)← Bt0(x, z)(x− xi)
19 return B

Fig. 1. Construction of Gröbner basis of IM

The remaining points (xi, yj) /∈ R : M
(m−h−1)
i,j = 1 can

be processed with IIA. That is, for all j1, j2 : j1 + j2 + 1 =

2W
(h)
i,j +M

(m−h−1)
i,j , one can apply the transformations given

by steps 1–4 in Section II-C to the Gröbner basis of Ĵ ′
h+1.

Observe that one needs to construct (before re-encoding) poly-
nomials Qt(x, y), t = 0, . . . , ρh+1, which constitute a Gröbner
basis both of module IW (h+1),ρh+1

and zero-dimensional ideal
IW (h+1) . This implies that xdegQρh+1

(x, y) = 0. After re-
encoding this constraint transforms to (13). However, it may
happen that IIA selects at step 2 the last polynomial as
the smallest one, and multiplies it by x − α at step 4.
Obviously, this will break the constraint on xdeg. To avoid this
problem one should append to the basis the last polynomial
multiplied by ϕ(x)z (y without re-encoding). Observe also that
employing the re-encoding transformation requires one to use
modified interpolation points given by (8).

D. Proposed algorithm

Figure 1 summarizes the proposed algorithm. Subroutine
InitialModule was described in Section IV-B. For details
of Merge, see [13]. Function Hasse(Bt, xi, yj , j1, j2, R)
computes the appropriate Hasse derivative of polynomial Bt

if i /∈ {R}x, and modified Hasse derivative (see [3, Eq. (52)])
otherwise.

V. COMPLEXITY ANALYSIS

The complexity of the proposed algorithm is dominated by
the last layer. According to [13], module squaring requires
O(nr3(a log(r

√
n/k) log(nr) + b(n −

√
nk))) operations,

where r is the maximum root multiplicity, a and b are some
constants. The computational cost of lines 9–18 of algorithm

TABLE I
INTERPOLATION TIME FOR (255, 239) CODE, S

maxMi,j = 3 maxMi,j = 6 maxMi,j = 9 maxMi,j = 12 maxMi,j = 15
Eb/N0, dB HA IIA HA IIA HA IIA HA IIA HA IIA

6.0 0.0077 0.0139 0.0161 0.0273 0.0394 0.0690 0.1835 0.1684 0.2160 0.3884
6.2 0.0063 0.0139 0.0122 0.0264 0.0356 0.0651 0.1447 0.1572 0.1934 0.3576
6.4 0.0060 0.0141 0.0109 0.0264 0.0316 0.0628 0.0921 0.1422 0.1648 0.3150
6.6 0.0059 0.0138 0.0108 0.0259 0.0281 0.0588 0.0603 0.1274 0.1519 0.2798
6.8 0.0057 0.0139 0.0099 0.0243 0.0252 0.0555 0.0476 0.1188 0.1382 0.2575
7.0 0.0052 0.0136 0.0089 0.0235 0.0225 0.0514 0.0403 0.1086 0.1302 0.2376

TABLE II
INTERPOLATION TIME FOR (63, 31) CODE, S

maxMi,j = 3 maxMi,j = 6 maxMi,j = 9 maxMi,j = 12 maxMi,j = 15
Eb/N0, dB HA IIA HA IIA HA IIA HA IIA HA IIA

4.8 0.0014 0.0050 0.0194 0.0419 0.0695 0.2009 0.2847 0.6376 0.6845 1.5568
5.0 0.0016 0.0056 0.0183 0.0450 0.0732 0.2166 0.2986 0.6565 0.6915 1.5969
5.2 0.0017 0.0059 0.0165 0.0471 0.0770 0.2141 0.3207 0.6538 0.7070 1.6057
5.4 0.0018 0.0064 0.0145 0.0473 0.0830 0.2167 0.3199 0.6640 0.7108 1.5572
5.6 0.0021 0.0066 0.0135 0.0492 0.0860 0.2237 0.3037 0.6386 0.7121 1.4701

in Figure 1 can be estimated as O(n2r4). Hence the overall
complexity of the hybrid interpolation algorithm is given by
O(n2r4). This is less than the complexity of IIA, which is
O(n2r5).

VI. NUMERIC RESULTS

The proposed algorithm was implemented in C++ pro-
gramming language, and its efficiency was assessed by com-
puter simulations. Transmission of the binary image of Reed-
Solomon codes over the AWGN channel with BPSK mod-
ulation was considered. The entries of the root multiplicitiy
matrix were computed as Mi,j = ⌊λPi,j⌋, where P is the
corresponding probability matrix.

Table I illustrates the complexity of the interpolation step for
the case of (255, 239) code over GF (28) based on IIA and the
proposed one (HA). Re-encoding was used in both cases. It can
be seen that the hybrid interpolation algorithm provides more
than two times complexity reduction, and the gain increases
with SNR. The reason is that for well-selected λ the density of
M (h), h < m, decreases with SNR, reducing thus the amount
of computation at steps 7–18. However, as it can be seen
from Table II, for the low-rate code this effect is outweighted
by the need to process high degree polynomials with the
multidimensional Euclidean algorithm, which is invoked by
Merge.

VII. CONCLUSION

In this paper a novel hybrid bivariate interpolation algorithm
for algebraic soft decision decoding of Reed-Solomon codes
was proposed. This algorithm combines the layered inter-
polation algorithm [2] with the re-encoding transformation,
iterative interpolation and Lee-O’Sullivan algorithms. Numeric
results indicate that it provides more than two times complex-
ity reduction compared to the case of iterative interpolation
algorithm.

ACKNOWLEDGEMENTS

This work was partially supported by the grant MK-
1976.2011.9 of the President of Russia and by the Saint-
Petersburg government research grant for students.

REFERENCES

[1] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-
Solomon codes,” IEEE Trans. on Inf. Theory, vol. 49, no. 11, pp. 2809–
2825, November 2003.

[2] V. Miloslavskaya and P. Trifonov, “Fast interpolation in algebraic soft
decision decoding of Reed-Solomon codes,” in Proc. of IEEE R8 Int.
Conf. on Computational Technologies in Electrical and Electronics
Engineering, 2010, pp. 65–69.

[3] R. Koetter, J. Ma, and A. Vardy, “The re-encoding transformation in
algebraic list-decoding of Reed-Solomon codes,” IEEE Trans. On Inf.
Theory, vol. 57, no. 2, February 2011.

[4] K. Lee and M. E. O’Sullivan, “An interpolation algorithm using Gröbner
bases for soft-decision decoding of Reed-Solomon codes,” in Proc. of
IEEE Int. Symposium on Inf. Theory, 2006, pp. 2032 – 2036.

[5] R. Koetter, “Fast generalized minimum-distance decoding of algebraic-
geometry and Reed-Solomon codes,” IEEE Trans. On Inf. Theory,
vol. 42, no. 3, May 1996.

[6] R. R. Nielsen and T. Hoholdt, “Decoding Reed-Solomon codes beyond
half the minimum distance,” in Proc. of the Int. Conf. on Coding Theory
and Cryptography. Mexico: Springer-Verlag, 1998, pp. 221–236.

[7] J. Jiang and K. R. Narayanan, “Algebraic soft-decision decoding of
Reed-Solomon codes using bit-level soft information,” IEEE Trans. On
Inf. Theory, vol. 54, no. 9, September 2008.

[8] F. Parvaresh and A. Vardy, “Multiplicity assignments for algebraic soft-
decoding of Reed-Solomon codes,” in Proc. of IEEE Int. Symposium on
Inf. Theory, June 2003, p. 205.

[9] H. Das and A. Vardy, “Multiplicity assignments for algebraic soft-
decoding of Reed-Solomon codes using the method of types,” in Proc.
of IEEE Int. Symposium on Inf. Theory, 2009.

[10] R. Roth and G. Ruckenstein, “Efficient decoding of Reed-Solomon codes
beyond half the minimum distance,” IEEE Trans. on Inf. Theory, vol. 46,
no. 1, pp. 246–257, 2000.

[11] T. Sauer, “Polynomial interpolation of minimal degree and Gröbner
bases,” in Proc. of the Int. Conf. “33 Years of Gröbner Bases”, 1998.

[12] T. Becker and V. Weispfenning, Gröbner Bases. A Computational
Approach to Commutative Algebra. New York: Springer, 1993.

[13] P. Trifonov, “Efficient interpolation in the Guruswami-Sudan algorithm,”
IEEE Trans. on Inf. Theory, vol. 56, no. 9, pp. 4341–4349, September
2010.

[14] J. Ma and A. Vardy, “A complexity reducing transformation for the
Lee—O’Sullivan interpolation algorithm,” in Proc. of IEEE Int. Sympo-
sium on Inf. Theory, 2007, pp. 1986 – 1990.

