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Abstract

Divide-and-conquer method for interpolation in Guruswami-Sudan (GS) list decoding algorithm
is considered. It is shown that the Groebner basis (GB) of the ideal of bivariate interpolation poly-
nomials (IP) can be obtained as a product of trivariate polynomials corresponding to disjoint subsets
of interpolation points. The impact of monomial ordering on the interpolation complexity is studied.

1 Introduction

A major drawback of the GS list decoding algorithm [1] is its high complexity. This paper addresses
the problem of efficient implementation of the bivariate interpolation step in the GS algorithm, which is
known to be the most complex part of it. This step consists in construction of a bivariate polynomial
with pre-assigned zeroes of a given multiplicity, which is equivalent to solving a homogeneous system of
linear equations. A number of reduced-complexity interpolation algorithms exploiting the structure of
this system were developed [2, 3]. Essentially, these algorithms iteratively construct the set of candidate
IPs. The polynomials continuously grow during the computation, making the complexity to be quadratic
in the number of equations. In some cases the number of equations may be reduced considerably [4].

The standard way to reduce the complexity of such algorithms is the divide-and-conquer approach.
The main idea of this method was introduced in [5]. However, some implementation issues were not
solved at that time. This paper addresses them by introducing an efficient method for construction of
the GB of the ideal of IPs.

The paper is organized as follows. Section 2 presents an overview of the GS and related algorithms.
Section 3 describes the proposed interpolation method. Finally, conclusions are drawn in Section 4.

2 List decoding of Reed-Solomon codes

2.1 Guruswami-Sudan algorithm

The GS algorithm solves the problem of list decoding of (n, k +1, n− k) RS code defined over field F, i.e.
finding for any given vector (y1, . . . , yn) ∈ Fn all codewords matching with it in at least τ positions. The
problem can be reformulated as finding all polynomials f(j)(x) : deg f(j)(x) ≤ k, |{xi|f(j)(xi) = yi}| ≥ τ ,
where xi ∈ F are code locators.

Definition 1. j-th Hasse derivative (HD) g[j](x0) of a polynomial g(x) =
∑t

i=0 gix
i at point x0 is equal

to the j-th coefficient of a “shifted” polynomial g(x+x0) =
∑t

i=0 g′ix
i. Alternatively, g[j](x0) = 1

j!g
(j)(x0),

where g(j)(x) is the conventional formal derivative of g(x).

Similarly one can define partial HDs of a bivariate polynomial. A polynomial is said to have a root
of multiplicity r at point z if all its HDs at z of total order less than r are equal to zero.
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The GS algorithm constructs a bivariate polynomial Q(x, y) with a minimal possible (1, k)-weighted
degree (see [1]) having all points (xi, yi) as roots of multiplicity r, and then finds all f(j)(x) as its roots:

1. Construct a polynomial Q(x, y) : wdeg(1,k) Q(x, y) ≤ l, where wdeg(a,b) Q(x, y) denotes (a, b)-
weighted degree of polynomial Q(x, y), such that

Q[j1,j2](xi, yi) = 0, j1 + j2 < r, i = 1..n (1)

2. Find all polynomials f(j)(x) : deg f(j)(x) ≤ k, s.t. Q(x, f(j)(x)) = 0. Select among them the
solutions of the list decoding problem.

Correctness proof of the algorithm and instructions for selecting its parameters l and r can be found in
[1, 2]. Efficient algorithm for finding roots of a bivariate polynomial is presented in [6].

2.2 Implementing the interpolation step

The iterative interpolation algorithm presented in [2] exploits the structure of the system of linear equa-
tions (1). Essentially, it constructs a GB of the module of IPs satisfying wdeg(0,1) Q(x, y) ≤ ρ for some
ρ [5]. That is, it constructs a ((ρ + 1) × (ρ + 1) matrix polynomial Q(x) (interpolating matrix) so that
any IP satisfying the above constraints can be represented as Q(x, y) = Y Q(x)(p0(x), . . . , pρ(x))T for
some polynomials pi(x), where Y = (y0, . . . , yρ). The algorithm starts from Q(x) = I and processes all
interpolation equations (1). For each equation it constructs a matrix

∆(i,j1,j2) =

0
BBBBBBB@

1 0 . . . 0 . . . 0
0 1 . . . 0 . . . 0

. . .

− ∆0
∆j0

− ∆1
∆j0

. . . x − xi . . . − ∆r
∆j0

. . .
0 0 . . . 0 . . . 1

1
CCCCCCCA

and multiplies Q(x) by it. Observe that det ∆(i,j1,j2) = δ(x−xi), δ 6= 0. Hence, for any algebraic extension
of F the matrix polynomial Q(x) obtained after processing all interpolation constraints is singular only
for x = xi, i = 1..n. Furthermore, its kernel at these points is also finite-dimensional. This implies that
the ideal generated by components of (Q0(x, y), . . . , Qρ(x, y)) = Y Q(x) is a zero-dimensional one [7].

This property allows one to perform interpolation as follows [5]. Partition the set of interpolation
points V ⊂ F2 into two disjoint subsets V0, V1 : V0

⋃
V1 = V . Construct the interpolating matrices Q(0)(x)

and Q(1)(x) for each subset and associated ideals I0 and I1, Is =< Q
(s)
0 (x, y), . . . , Q(s)

ρ (x, y) >, s = 0, 1.
By construction, these ideals are coprime, and the ideal of IPs satisfying (1) is given by a product of I0

and I1, i.e. I = I0I1 =< Q
(0)
i (x, y)Q(1)

j (x, y), 0 ≤ i, j ≤ ρ >.
For any monomial ordering the minimal IP always appears in the reduced GB of the ideal of IPs [8].

It is therefore necessary to apply the Buchberger algorithm in order to find all the solutions of the list
decoding problem. The input to this algorithm is the set of all pairwise products Q

(0)
i (x, y)Q(1)

j (x, y).
Usually the reduced GB has much less elements, and they have much smaller degree. This means that
straightforward ideal multiplication with subsequent Buchberger reduction is not an optimal method.

3 Constructing the product of ideals

3.1 Fast ideal multiplication

This section introduces a fast method for computing the product of ideals of IPs, which is based on the
one-to-one correspondence between zero-dimensional ideals and zeroes of Hasse derivatives of their bases.

Definition 2 ([9]). Let D[i,j] be the differential operator corresponding to computing HD of order i over
variable x and order j over y. Let

σxlym(D[i,j]) =

{
D[i−l,j−m], i ≥ l ∧ j ≥ m

0, otherwise.
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Subset G of the set of differential operators D is closed, if ∀(l, m) ∈ N2,∀δ ∈ G : σxlym(δ) ∈ G.

Theorem 1 ([9], Th. 2.8). Every zero-dimensional ideal I is uniquely defined by giving a set of points
t1, . . . , tn in F, and for each point a closed subspace Gi = spanF(δi1, . . . , δi,si

) ⊂ spanF(D), so that f ∈ I
iff ∀i, j : δij(ti)(f) = 0, where δij(ti)(f) is the value of differential operator δij applied to f at point ti.

The set G of HDs of total order less than r is closed, so the ideal of IPs is unique.

Definition 3. Let {Q0(x, y), . . . , Qρ(x, y)} ⊂ F[x, y] be a basis of ideal I. The generating function of the
basis B is defined as Q(x, y, z) =

∑ρ
i=0 Qi(x, y)zi.

The root set of a generating function of a basis of ideal I includes V (I)× F, where V (I) is the affine
variety of I, as well as some other points, which depend on the basis used and order of elements in it.

Theorem 2. Let Is =< Q
(s)
0 (x, y), . . . , Q(s)

ρ (x, y) >, s = 0, 1 be zero-dimensional coprime ideals. Then
I ′ =<

∑ρ
j=0 Q

(0)
i−j(x, y)Q(1)

j (x, y), i = 0..2ρ > and I = I0I1 coincide.

Proof. Let Vs = V (Is) = {(xi, yi)} be the set of zeroes of Is, and let Gi be the associated closed sets of
nullified differential operators. The generating function of any Is basis may be represented as

∀(xi, yi) ∈ Vs : Q(s)(x, y, z) =
∑

l

Q
(s)
l (x, y)zl =

∑

(j1,j2):D[j1,j2] /∈Gi

(x− xi)j1(y − yi)j2Pij1j2(x, y, z),

where Pij1j2(x, y, z) are some polynomials such that Pij1j2(xi, yi, z) 6= 0. Since I0 and I1 are coprime,
(xi, yi) ∈ V0 implies Q(1)(xi, yi, z) 6= 0 and vice versa. Hense, the product of generating functions
Q(x, y, z) = Q(0)(x, y, z)Q(1)(x, y, z) satisfies

Q(x, y, z) =
∑

(j1,j2):D[j1,j2] /∈Gi

(x− xi)j1(y − yi)j2Pij1j2(x, y, z)Q(1−s)(x, y, z), (xi, yi) ∈ Vs, s = 0, 1

and Pij1j2(xi, yi, z)Q(1−s)(xi, yi, z) 6= 0, (xi, yi) ∈ Vs, i.e. algebraic roots multiplicity of all polynomials
in I ′ is exactly the same as in original ideals. Hence,

Q ∈ I ′ ⇔ (∀(xi, yi) ∈ V0

⋃
V1)δij(xi, yi)(Q) = 0, (2)

where differential operators δij are exactly the same as for I0 and I1. Since all pairs Q
(0)
i (x, y)Q(1)

j (x, y)
belong both to I0 and I1, they satisfy the constraint (2). Hence, they belong to I ′, that is I ⊂ I ′.
Inclusion I ′ ⊂ I is obvious.

This theorem enables one to compute the product of ideals by multiplying the generating functions of
their bases. This can be implemented by any fast linear convolution algorithm. Furthermore, the basis
of ideal product obtained in this way contains only 2ρ + 1 elements, which is much less than (ρ + 1)2 for
the case of conventional ideal multiplication rule.

3.2 Extracting module from the ideal

Recall, that list decoding of RS codes requires one to construct an IP with minimal possible weighted
degree. It is known to appear in the GB of the module of IPs with y-degree not higher than ρ [2]. Since
the ideal of bivariate IPs can be considered as an infinite-dimensional module, so that any polynomial in
it is represented as (y0, y1, . . .)Q(x)(p0(x), p1(x), . . .)T , one has to project it onto ρ + 1 first coordinates.
This can be performed by triangularizing the semi-infinite matrix Q(x). However, this can be avoided
by using the Groebner bases of I0 and I1 constructed for lexicographic monomial ordering. In this case
leading terms of basis elements can be written as LTQ

(s)
i (x, y) = axbyi for some a ∈ F, b ∈ Z≥0. Since

LT(a) LT(b) = LT(ab) for any monomial ordering, the basis obtained by multiplying the generating
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functions is also a Groebner one with respect to lexicographic ordering, and the corresponding semi-
infinite matrix Q(x) consists of triangular blocks. Clearly, in this case the order of coefficients in the
basis generating function does matter. Furthermore, it is possible to compute the product of generating
functions modulo zρ+1, since higher order terms cannot belong to the target module of IPs.

The described calculations lead to a GB of the module of IPs with respect to lexicographic ordering.
In order to obtain the minimum weighted degree IP one has to transform it into a reduced GB with
respect to any (1, k)-weighted ordering. This can be done using the algorithm described in [10].

The proposed algorithm was implemented in C++ programming language. Computer simulations
show that for (32, 17) RS code the divide-and-conquer method provides approximately 2.5 times reduction
of the complexity compared to straightforward implementation of iterative interpolation algorithm [2].
Furthermore, it allows to implement some steps of the list decoding algorithm in parallel. Analytical
estimation of the proposed algorithm complexity is the subject of future work.

4 Conclusions

In this paper a novel method for computing the product of zero-dimensional coprime ideals was described.
It reduces the ideal multiplication problem to computing a linear convolution of two multivariate poly-
nomials. To the best of author knowledge, the problem of fast ideal multiplication was not studied
before and the proposed method seems to be the first one. The proposed method was employed in the
divide-and-conquer RS list decoding algorithm. It was shown that employing the lexicographic monomial
ordering allows one to simplify the post-processing step of this algorithm. The proposed method can be
used also for algebraic soft-decision decoding of RS codes.

The method considered in this paper still allows many improvements. First, construction of GB intro-
duces artificial term orderings, which may be excessively strong in the context of bivariate interpolation
problem. Second, only one element of the GB is used in the factorization step of GS algorithm, i.e. a lot
of unnecessary data is computed. Detailed analysis of these issues is the subject of further work.
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