
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 2, FEBRUARY 2016 1

Polar Subcodes
Peter Trifonov, Member, IEEE,and Vera Miloslavskaya,Member, IEEE

.
Abstract—An extension of polar codes is proposed, which allows

some of the frozen symbols, called dynamic frozen symbols, to
be data-dependent. A construction of polar codes with dynamic
frozen symbols, being subcodes of extended BCH codes, is
proposed. The proposed codes have higher minimum distance
than classical polar codes, but still can be efficiently decoded
using the successive cancellation algorithm and its extensions. The
codes with Arikan, extended BCH and Reed-Solomon kernel are
considered. The proposed codes are shown to outperform LDPC
and turbo codes, as well as polar codes with CRC.

Keywords—Polar codes, generalized concatenated codes, BCH
codes, Reed-Solomon codes.

I. I NTRODUCTION

Polar codes were recently shown to be able to achieve
the capacity of binary input memoryless output-symmetric
channels [1]. Low-complexity construction, encoding and de-
coding algorithms are available for polar codes. However, the
performance of polar codes of moderate length appears to be
quite poor. This is both due to suboptimality of the succes-
sive cancellation (SC) decoding algorithm and low minimum
distance of polar codes. The first problem can be solved by
employing list/stack SC decoding techniques [2]–[7], which
far outperform the SC algorithm. Alternatively, one can usethe
belief propagation algorithm [8]. Its performance, however, is
still inferior to list/stack SC decoding.

The second problem can be solved by constructing a gen-
eralized concatenated code with inner polar codes [9]–[11],
or employing a serial concatenation of an error detecting or
error correcting code and a polar code [2], [8], [12]–[14].
However, in the second case it is not clear how the parameters
of the outer codes affect the minimum distance and finite-
length performance of the concatenated code.

It was shown recently that a sequence of linear codes
achieves capacity on a memoryless erasure channel under MAP
decoding if their blocklengths are strictly increasing, rates
converge to somer ∈ (0, 1), and the permutation group of
each code is doubly transitive [15], [16]. This class of codes
includes Reed-Muller (RM) and extended primitive narrow-
sense BCH (EBCH) codes. Observe that RM codes can be
considered as a special case of polar codes. On the other
hand, EBCH codes are known to have much higher minimum
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distance than comparable RM codes, and are therefore likely
to provide better finite length performance. However, thereare
still no efficient MAP decoding algorithms for these codes.

It was suggested in [17] to construct subcodes of RM codes,
which can be efficiently decoded by a recursive list decoding
algorithm. In this paper we generalize this approach, and
propose a code construction ”in between” polar codes and
EBCH codes. The proposed codes can be efficiently decoded
using the techniques developed in the area of polar coding,
but provide much higher minimum distance, which can be
accurately controlled. The obtained codes outperform state-
of-the art LDPC, turbo and polar codes. More specifically,
in Section III we introduce an extension of generalized con-
catenated codes (GCC), called interlinked generalized concate-
nated codes (IGCC). Recursive application of this construction
enables one to represent a linear block code in a form which,
in principle, enables its decoding by the SC algorithm (Sec-
tion IV). This form, called polar codes with dynamic frozen
symbols, can be considered as a generalization of polar codes.
We show that EBCH codes are particularly well suited for
such representation, although their SC decoding is still not
very efficient. Furthermore, we present a special case of IGCC,
called polar subcodes, with good performance under the SC
algorithm and its derivatives (Section V). The proposed codes
are subcodes of EBCH codes. We consider polar subcodes
with Arikan, EBCH and Reed-Solomon kernel. Simulation
results presented in Section VI show that the proposed codes
outperform state-of-the-art polar, LDPC and turbo codes.

II. BACKGROUND

A. Generalized concatenated codes

A generalized concatenated code (GCC) [18] overFq

is defined using a family of nested inner(n, ki, di) codes
Ci : C0 ⊃ C1 ⊃ · · · ⊃ Cν−1, and a family of outer
(N,Ki, Di) codesCi, where thei-th outer code is defined over
Fqki−ki+1 , 0 ≤ i < ν, kν = 0. It will be assumed in this paper
thatki = ki+1+1, ν = n. LetG be an×n matrix, such that its
rowsi, . . . , n−1 generate codeCi. GCC encoding is performed
as follows. First, partition a data vector inton blocks of size
Ki, 0 ≤ i < n. Second, encode these blocks with codesCi to
obtain codewords(c̃i,0, . . . , c̃i,N−1). Finally, multiply vectors
(c̃0,j , . . . , c̃n−1,j), 0 ≤ j < N, by G to obtain a GCC codeword
(c0,0, . . . , cn−1,0, c0,1, . . . , cn−1,N−1). Figure 1 illustrates this
construction. A GCC generator matrix can be obtained as

G =




G(0) ⊗ G0,−

G(1) ⊗ G1,−

...
G(n−1) ⊗ Gn−1,−


 ,
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whereG(i) is a generator matrix ofCi, andGi,− denotes the
i-th row of G. It is possible to show that this encoding method
results in a(Nn,

∑n−1
i=0 Ki,≥ mini diDi) linear block code.

GCC can be decoded with a multistage decoding (MSD)
algorithm [19]–[21]. Fori = 0, 1, . . . , N − 1, this algorithm
takes as input noisy instancesyt,j of codeword symbols
ct,j , 0 ≤ t < n, 0 ≤ j < N , successively computes estimates
of c̃i,j using a SISO decoder ofCi, and passes these estimates
to a decoder ofCi to recover the corresponding codeword.
Then it proceeds with decoding ofCi+1 andCi+1, as shown
in Figure 2. The performance of the MSD algorithm depends
strongly on parameters of outer codes. An extensive survey of
various methods for their selection can be found in [21].

B. Polar codes

(n = lm, k) polar code overFq is a linear block code
generated byk rows of matrixA = Bl,mF⊗m

l , whereBl,m

is the digit-reversal permutation matrix,Fl is a l × l matrix

called kernel (e.g.F2 =

(
1 0
1 1

)
is the Arikan kernel),

and ⊗m denotesm-times Kronecker product of the matrix
with itself [1]. The digit-reversal permutation maps integer
i =

∑m−1
j=0 ij l

j, 0 ≤ ij < l, onto
∑m−1

j=0 ijl
m−1−j. The

particular rows to be used in a generator matrix are selectedso
that the error probability under the below described successive
cancellation (SC) decoding algorithm is minimized. Hence,a
codeword of a classical polar code is obtained asc = uA,
where ui = 0, i ∈ F , and F ⊂ {0, . . . , n− 1} is the
set of n − k frozen symbol indices. It is possible to show
that matrixA transforms the original binary input memory-
less output-symmetric channelW

(0)
1 (y|c) into bit subchannels

W
(i)
n (yn−1

0 , ui−1
0 |ui), the capacities of these subchannels con-

verge with m to 0 or 1 symbols per channel use, and the
fraction of subchannels with capacity close to1 converges
to the capacity ofW (0)

1 (y|c). Here ats = (as, . . . , at), and
y0, . . . , yn−1 are the noisy symbols obtained by transmitting
codeword symbolsc0, . . . , cn−1 over a binary input memory-
less output-symmetric channelW (0)

1 (y|u).

The SC decoding algorithm at phasei computes
W

(i)
n (yn−1

0 , ui−1
0 |ui), ui ∈ Fq (or W

(i)
n (ui

0|yn−1
0 ), which is

more convenient for implementation), and makes decisions

ûi =

{
argmaxui∈Fq

W
(i)
n (ui

0|yn−1
0 ), i 6∈ F

0, otherwise.
(1)

This decision is used at subsequent steps instead of the true
value ofui to determine the values ofui+1, . . . , un−1. It was
shown in [1] that these calculations can be implemented with
complexityO(n logn). For example, in the case ofl = 2, q =
2 these probabilities can be computed as

W (2i)
n (u2i

0 |yn−1
0 ) =

1∑

u2i+1=0

W
(i)
n
2
(u2i+1

0,even ⊕ u2i+1
0,odd|y

n
2 −1
0 )W

(i)
n
2
(u2i+1

0,odd|yn−1
n
2

)
(2)

W (2i+1)
n (u2i+1

0 |yn−1
0 ) =

W
(i)
n
2
(u2i+1

0,even ⊕ u2i+1
0,odd|y

n
2 −1
0 )W

(i)
n
2
(u2i+1

0,odd|yn−1
n
2

).
(3)

For q = 2 the Bhattacharyya parametersZn,i of the bit
subchannelsW (i)

n (yn−1
0 , ui−1

0 |ui) satisfy [22]

Z
∆j

n/l,i ≤ Zn,il+j ≤ 2l−jZ
∆j

n/l,i, (4)

where Z1,0 is the Bhattacharryya parameter of the original
binary memoryless symmetric channel, and∆i, 0 ≤ i < l, are
partial distances of matrixFl. Similar bounds are provided in
[23] for q > 2. For the case ofl = 2 (Arikan kernel), one can
obtain more precise estimates as [1], [24]

Zn/2,i

√
2− Z2

n/2,i ≤ Zn,2i ≤2Zn/2,i − Z2
n/2,i (5)

Zn,2i+1 =Z2
n/2,i. (6)

Furthermore, for the case of the binary erasure channel, one
hasZn,2i = 2Zn/2,i − Z2

n/2,i.
Let Pi = 1− P {Ci|C0, . . . , Ci−1} be the error probability

of symbol ui under SC decoding, whereCi is the event
corresponding to correct estimation of symbolui. Then the
SC decoding error probability is given by

P = 1−
∏

i/∈F

(1− Pi). (7)

Efficient techniques are available for computingPi in the case
of Arikan kernel [9], [25]. The standard way to construct
practical polar codes is to selectF as the set ofn− k indices
i with the highest error probabilityPi.

For anys, 0 < s ≤ m, polar codes can be considered as
GCC with inner codes generated by the rows of matrixF⊗s

l ,
and outer codes generated by some submatrices ofF

⊗(m−s)
l .

The SC decoding algorithm can be considered as an instance of
the MSD method, where symbol-by-symbol decoding of outer
codes is used. It was shown in [9] that significant performance
improvement can be achieved by employing near-ML decoding
algorithms for outer codes. Even better performance can be
obtained by employing list or stack decoding algorithms [2]–
[6]. These algorithms keep track of a number of vectorsûi−1

0 ,



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 2, FEBRUARY 2016 3

Outer Encoder 0

Outer Encoder 1

Outer Encoder 2

Outer Encoder 3

Inner 

Encoder

u
(0)

u
(1)

u
(2)

u
(3)

M
�����

M
�����

M
�����

M
�����

M
�����

M
�����

Fig. 3. Interlinked generalized concatenated code

and at each step increase the length of one or more of these
vectors by1, and compute probabilitiesW (i)

n (ûi
0|yn−1

0 ) (or
related values). Vectors with low probabilities are discarded,
so that there are at mostL vectors of lengthi for eachi. The
worst-case complexity of these algorithms isO(Ln logn).

C. BCH codes

An (n = qm, k,≥ d) extended primitive narrow-sense
BCH (EBCH) code is a set of vectorscn−1

0 ∈ Fn
q , such

that
∑n−1

i=0 cix
j
i = 0, 0 ≤ j < d − 1, where (x0, . . . , xn−1)

is a vector of distinct values ofFqm , called code locators.
Setting x0 = 0, xi = αi−1, 1 ≤ i < n, results in an
extended cyclic code with generator polynomialg(x) =
LCM(M1(x), . . . ,Md−2(x)), where Mi(x) is a minimal
polynomial ofαi, andα is a primitive element ofFqm . How-
ever, in this paper, unless stated otherwise, it will be assumed
that xi are arranged in the standard digit order, wherexi =∑m−1

j=0 Xi,jβj , i =
∑m−1

j=0 Xi,jq
j , Xi,j ∈ {0, . . . , q − 1}, and

β0, . . . , βm−1 is some basis ofFqm . By abuse of notation,Xi,j

denotes here both an integer, and the corresponding element
of Fq.

III. I NTERLINKED GENERALIZED CONCATENATED
CODES

A. The construction

In this section we present an extension of the generalized
concatenated codes, called interlinked GCC (IGCC). This
extension can be used to represent a broad class of linear
block codes. It enables one to decode such codes using the
techniques developed in the area of generalized concatenated
and multilevel coding. These decoding algorithms, however,
are not guaranteed to perform well for an arbitrary IGCC. But
it will be shown below how to construct IGCC with good
performance under MSD (actually, SC) and its list extensions.

Interlinked GCC encodes the subvectoru(i) ∈ FKi
q of the

data vector not with the outer codeCi, as in the classical
GCC, but with its coset given byCi +

(∑i−1
s=0 u

(i)M (s,i)
)

,

where M (s,i) ∈ FKs×N
q are some matrices, as shown in

Figure 3. This results in a linear block code of lengthNn and
dimension

∑n−1
i=0 Ki. It is, however, quite difficult to estimate

the minimum distance of the obtained code. Obviously, for
any pair of non-negative integersη, k : η > k, if there exists
a (η, k, d) GCC, then there also exists a(η, k,≥ d) IGCC.

The MSD algorithm can be used to decode IGCC. However,
one needs to perform decoding not in outer codes, but in their
cosets. This can be done with any decoder forCi, provided
that its input LLRs are appropriately adjusted.

B. Generalized Plotkin decomposition of linear codes

As a special case of IGCC, which corresponds to the case

of inner codes generated by rows ofG = F2 =

(
1 0
1 1

)
,

we consider an extension of the classical Plotkin construction.
This extension will be used below to derive a generalization
of Arikan polar codes.

Theorem 1. Any linear (2n, k, d) code C has a generator
matrix given by

G =

(
Ik1 0 Ĩ
0 Ik2 0

)(G1 0
G2 G2

G3 G3

)
, (8)

whereIl is a l × l identity matrix,Gi, 1 ≤ i ≤ 3, are ki × n
matrices,k = k1 + k2, and Ĩ is obtained by stacking a(k1 −
k3)× k3 zero matrix andIk3 , wherek3 ≤ k1.

Proof: Let G̃ = (G′ G′′), whereG′ andG′′ are some
k × n matrices, be a generator matrix of the code, and let
H̃ = (H ′ H ′′) be the corresponding parity check matrix. Let
G2 be a maximum rank solution of matrix equationG2(H

′ +
H ′′)T = 0. Gaussian elimination can be used to construct

matrix G = QG̃ =

(
G5 0
G4 G3

G2 G2

)
, such thatQ is an invertible

matrix, rows ofG3 are linearly independent with rows ofG2,
andk = k2 + k3 + k5. It can be seen that

G =

(
Ik5 0 0 0
0 Ik3 0 Ik3

0 0 Ik2 0

)


G5 0
G4 −G3 0

G2 G2

G3 G3


 . (9)

Then the statement follows by settingG1 =

(
G5

G4 −G3

)
.

Another way to constructG1 is to computeG′ + G′′, and
eliminate linearly dependent rows from the obtained matrix.

Classical Plotkin concatenation of two codes corresponds
to the case ofk3 = 0, so the representation of a generator
matrix in the form (8) will be referred to as a generalized
Plotkin decomposition (GPD) ofG or the corresponding code
C. Applying the GPD to equivalent codes may result in codes
C1, C2 with different dimensions and performance.
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u15
0




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1







1 0 0
1 1 1
1 α α

3

1 1 + α (1 + α)3

1 α
2 1 + α+ α

2 + α
3

1 1 + α
2 1 + α

1 α(1 + α) 1 + α
2

1 1 + α+ α
2 1 + α+ α

2 + α
3

1 α
3 1 + α

2

1 1 + α
3 1 + α

1 α(1 + α
2) 1

1 1 + α+ α
3 1

1 α
2(1 + α) 1 + α

1 1 + α
2 + α

3
α
3

1 α(1 + α+ α
2) 1 + α

2

1 1 + α+ α
2 + α

3
α
3




= 0.

Example 1. Consider a(16, 7, 6) EBCH code generated by

G =




1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 0 1 0 1 1 0 0 0 1 1 0 0 0
1 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0




.

Its GPD is given byG1 =

(
0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 0
1 1 1 1 1 1 1 1

)
, G2 =



1 0 0 1 0 1 1 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1


 , G3 =

(
0 0 0 1 1 0 0 0
1 1 0 1 1 0 0 0

)
.

GPD enables one to perform hard-decision decoding of code
C as follows. LetCi be the code generated byGi. Consider a
noisy codeword(y′|y′′) = (c′|c′′)+(e′|e′′), wheree = (e′|e′′)
is an error vector. Computez = y′+y′′ = (c′+c′′)+(e′+e′′).
One can decodez in C1 to identify information vectoru′ and
codewordc′+c′′ = u′G1. If this step is completed successfully,
one can computẽy′ = y′−u′(G1+ĨG3) andỹ′′ = y′′−u′ĨG3,
and try to decode these vectors inC2. This algorithm can be
easily tailored to implement soft-decision decoding.

One can see from (8) thatC2 has minimum distanced2 ≥
d/2. However,d1 can be very low. Hence, the above described
algorithm may fail to correct event ≤ ⌊(d− 1)/2⌋ errors. A
workaround for this problem is to employ list decoding forC1
to identify a number of possible vectorsu′, for each of them
decode the corresponding vectorsỹ′, ỹ′′ in C2, and select the
codeword(c′|c′′) closest to the received sequence.

GPD may be also applied recursively. This results in codes
of length1 and dimension at most1, as discussed below.

IV. DYNAMIC FROZEN SYMBOLS

A. Representation of a linear code for SC decoding

Consider an(n = lm, k, d) code C over Fq with check
matrix H . Let A = Bl,mF⊗m

l be a matrix of ann × n

polarizing transformation. SinceA is invertible, any vector
of lengthn can be obtained as an outputcn−1

0 = un−1
0 A of

the polarizing transformation. Let us investigate the constraints
which need to be imposed onun−1

0 , so that the output of the
polarizing transformation is a codeword ofC.

These constraints are given by the equationun−1
0 AHT = 0.

By applying Gaussian elimination, one can construct the
constraint matrixV = QHAT , where Q is an invertible
matrix, such that all rows ofV end in distinct columns, i.e.
the valuesji = max {t|Vi,t 6= 0} , 0 ≤ i < n− k are distinct.
It can be assumed without loss of generality thatVi,ji = −1.
Let F = {ji|0 ≤ i < n− k}. Then one obtains

uji =

ji−1∑

s=0

usVi,s, 0 ≤ i < n− k. (10)

These equations can be considered as a generalization of the
concept of frozen symbols, i.e. constraints of the formuji =
0, ji ∈ F , used in the construction of polar codes. Observe
that symbolsuji , ji ∈ F can take arbitrary values, which,
however, depend on the values of some other symbols with
smaller indices. Therefore, symbolsuji given by (10) will be
referred to as dynamic frozen symbols.

Example 2. Consider(16, 7, 6) EBCH codeC over F2. The
generator polynomial of the corresponding non-extended code
has rootsα, α3 and their conjugates, whereα is a primitive
root of x4 + x3 + 1. The constraints on vectoru15

0 , such that
u15
0 A ∈ C, are given by the equation at the top of this page.

Multiplying matrices, expanding their elements in the standard
basis and applying elementary linear operations, one obtains

u15
0




0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




T

= 0
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This means thatu0 = u1 = u2 = u4 = u8 = 0, and
u6 = u3, u9 = u5, u10 = u3 + u5, u12 = u10. Symbols
u3, u5, u7, u11, u13, u14, u15 are non-frozen.

Observe that any linear code of lengthlm can be represented
by a system of equations (10). This enables one to employ
the SC decoding algorithm and its variations for decoding
of arbitrary linear codes of lengthlm. That is, one can
successively make decisions

ûi =

{
argmaxui∈Fq

W
(i)
n (ui

0|yn−1
0 ), i 6∈ F∑i−1

s=0 usVti,s, otherwise,
(11)

whereti is an integer, such thatjti = i. Observe that ifui−1
0

are the correct values of the input symbols of the polarizing
transformation, the probability of symbol errorPi in this case
remains the same as in the case of classical polar codes. Hence,
the error probability of the considered code under SC decoding
can be still computed via (7).

The setF of dynamic frozen symbol indices for a generic
linear code is not guaranteed to contain all symbols with high
error probability. Hence, for most linear codes the SC decoding
error probability, given by (7), far exceeds the error probability
of other decoding algorithms. Substantially better performance
can be obtained by employing list or stack SC decoding tech-
niques. However, the list size (i.e. the decoding complexity)
needed to obtain near-ML performance, in general, increases
exponentially with code dimension.

The complexity of computingW (i)
n (ui

0|yn−1
0 ) is exactly the

same as in the case of classical polar codes, i.e.O(n log n).
However, evaluation of the expression (10) may increase the
decoding complexity toO(n2).

B. Extended BCH codes and Arikan kernel

Let us investigate in more details the structure of the
set of dynamic frozen symbol indices of binary extended
primitive narrow-sense BCH (EBCH) codes for the case of
Arikan polarizing transformation. Observe that in this case
construction of the system of equations (10) can be viewed
as a recursive application of the GPD to the considered code.

It was shown in [26]–[28] that a punctured RM code of order
r and length2m is equivalent to a cyclic code with generator
polynomial g(x) having rootsαi : 1 ≤ wt(i) < m − r, 1 ≤
i ≤ 2m− 2, whereα is a primitive element ofF2m , andwt(i)
is the number of non-zero digits in the binary expansion of
integer i. Furthermore, it was shown in [29] that an EBCH
codeC′ of length2m with design distanced ≥ δ(r,m) + 3 is
a subcode of the RM code of orderm− r − 1, where

δ(r,m) = max
i:wt(i)=r

min
{
i2j mod (2m − 1)|0 ≤ j < m

}
.

A recursive expression forδ(r,m) is derived in [29]. One can
consider a RM code of orderm − r − 1 as a polar code
with the set of frozen symbol indicesF ′′ = {i|wt(i) ≤ r}.
Hence, the set of dynamic frozen symbol indicesF ′ for
the EBCH code includesF ′′. It can be seen from (5)–(6)
that Zn,i = O(Z2wt(i)

1,0 ). Hence, the set of frozen symbols
for EBCH codes includes all those ones, such that their

Bhattacharyya parameters (and error probabilityPi ≤ 1
2Zn,i)

decrease slowly while decreasing the Bhattacharyya parameter
Z1,0 of the original channel. Most of these symbols have high
error probabilityPi.

The above statement is true only if one employs standard
digit ordering. That is, each coordinateci of a codeword
(c0, . . . , cn−1) can be associated with somexi ∈ F2m , so that
all xi are distinct, and all codewords satisfy check equations

n−1∑

i=0

cix
j
i = 0, 0 ≤ j < d− 1. (12)

The standard digit ordering is given byxi =
∑m−1

j=0 Xi,jβj ,
wherei =

∑m−1
j=0 Xi,j2

j, Xi,j ∈ {0, 1}, andβ0, . . . , βm−1 is
some basis ofF2m . In what follows, more detailed characteri-
zation of the set of dynamic frozen symbols for EBCH codes
will be derived.

Let

Ct =
{
t2i mod 2m−1|0 ≤ i < mt, t2

mt ≡ t mod 2m − 1
}

be a cyclotomic coset generated byt. Let Q be the set of
minimal cyclotomic coset representatives. It can be seen that
all elements of a cyclotomic coset have the same weight.
Therefore ∑

s∈Q
wt(s)=r

ms =

(
m

r

)
.

Theorem 2. Consider a(2m, k, d) extended primitive narrow-
sense BCH code overF2. LetS = {i ∈ Q|0 ≤ i < d− 1}. Let
Nt be the number of dynamic frozen symbolsui for this code,
such thatwt(i) = t. ThenNt =

∑
s∈St

ms, where St =
{s ∈ S|wt(s) = t}, andms is the size of the cyclotomic coset
generated bys.

Proof: Consider parity check equation (12). Letxi =∑m−1
s=0 Xi,sβs, Xi,s ∈ {0, 1}. Then

xj
i =

(
m−1∑

s=0

Xi,sβs

)j

=

(
m−1∑

s=0

Xi,sβs

)∑m−1
t=0 jt2

t

=

m−1∏

t=0

(
m−1∑

s=0

Xi,sβ
2t

s

)jt

=
∑

wt(em−1
0 )≤wt(j)
es∈{0,1}

vj;em−1
0

m−1∏

s=0

Xes
is ,

where vj;em−1
0

∈ F2mj are some coefficients. Hence, any

codewordcn−1
0 satisfies

0 =
∑

wt(em−1
0 )≤wt(j)
es∈{0,1}

vj;em−1
0

n−1∑

i=0

ci

m−1∏

s=0

Xes
is , j ∈ S̃,

whereS̃ =
{
j2l|j ∈ S, 0 ≤ l < mj , j2

mj ≡ j mod 2m − 1
}

.
It can be seen that thei-th row of A = B2,mF⊗m

2

is a sequence of values of various monomialsX(a) =∏m−1
s=0 X

am−1−s
s , as ∈ {0, 1} at point (Xi,0, . . . , Xi,m−1) ∈
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Fm
2 . Hence,ue′ =

∑n−1
i=0 ci

∏m−1
s=0 Xes

i,s is the value of thee′-
th element of the input vector of the polarizing transformation,
where e′ =

∑m−1
s=0 es2

m−1−s, es ∈ {0, 1}, and un−1
0 =

cn−1
0 A, so that

0 =
∑

wt(em−1
0 )≤wt(j)

vj;em−1
0

ue′ , j ∈ S̃

Any such equation gives rise tomj equations with coefficients
in F2. Observe that there arẽMt =

∑ρ
i=t

∑
s∈Si

ms equations,
which involve symbolsue′ : t ≤ wt(e′) ≤ ρ, where ρ =

max0≤j<d−1 wt(j). Hence, the number̂Mt =
∑ρ

i=t Nt of
dynamic frozen symbolsui : t ≤ wt(i) ≤ ρ, is upper bounded
by M̃t. It can be also seen that̂M0 = M̃0.

The equalityN0 = 1 = m0 holds for any EBCH code
with d ≥ 2. Assume thatNt =

∑
s∈St

ms for all t < t0, so

that M̂t0 = M̃t0 . Since M̂t0+1 = M̂t0 − Nt0 ≤ M̃t0+1 =

M̃t0 −∑s∈St0
ms, one obtainsNt0 ≥ ∑

s∈St0
ms. Assume

that this inequality is strict.
Any codeword of the considered EBCH code can be repre-

sented as a vector of values of polynomial

f(x) =
∑

t∈Q\S

Trmt
(γtx

n−1−t) (13)

in distinct pointsxi ∈ F2m , whereγi ∈ F2mi , Trm(x) =∑m−1
i=0 x2i . This polynomial can be represented in multivariate

form as

f(X0, . . . , Xm−1) =
∑

t∈Q\S

Trmt


γt

m−1∏

j=0

(
m−1∑

l=0

β2j

l Xl

)1−tj



=
∑

e0,...,em−1∈{0,1}

ue′

m−1∏

l=0

X1−el
l (14)

where t =
∑m−1

j=0 tj2
j , tj ∈ {0, 1}, so thatci = f(xi) =

f(Xi,0, . . . , Xi,m−1). Observe that thee′-th row of matrixA
can be considered as a table of values of

∏m−1
l=0 X1−el

l in
various points ofFm

2 . Hence,ue′ can be considered as input
symbols of the polarizing transformation.

Hence, the set of polynomialsf(X0, . . . , Xm−1) corre-
sponding to the considered code containsKt0 =

(
m
t0

)
−∑

s∈St0
ms linearly independent polynomials given by (14)

of degreem − t0. Observe also that the forms of degree
m − t0 of these polynomials are also linearly independent.
However, this is not possible since, by assumption, there are
Nt >

∑
s∈St0

ms constraints on the coefficients of these
forms. The obtained contradiction proves the theorem.

The particular set of dynamic frozen symbol indicesF ′

of the EBCH code depends on the basis being used. One
may enumerate different bases ofF2m and select the one
which minimizes the SC decoding error probability (7). Similar
approach was used in [30], [31] to obtain trellis diagrams of
EBCH codes.

Theorem 2 and the existence of a RM supercode suggest that
the SC algorithm and its variations may work for EBCH codes.
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Fig. 4. Performance of list/stack SC decoding of extended BCH codes

Unfortunately, experiments show that this is true only for small
n. Figure 4 illustrates the performance of EBCH codes under
list/stack SC algorithm with list sizeL and box-and-match [32]
algorithm with reprocessing ordert, as well as Arikan polar
codes. It can be seen that Arikan polar codes far outperform
extended BCH codes in the case of list sizeL equal to1 (i.e.
classical SC decoding). However, higher minimum distance
results in significant performance gain of EBCH codes under
box-and-match near-ML decoding algorithm. Huge list sizeL
is needed in order to obtain comparable performance under
list/stack SC decoding, while Arikan polar codes achieve the
near-ML performance already forL = 4.

V. POLAR SUBCODES

It is possible to show that the minimum distance of polar
codes with Arikan kernel is given byO(

√
n) [33]. This results

in quite poor ML decoding performance.
Exact performance analysis of the list/stack SC decoding

algorithm, which is commonly used to implement near-ML
decoding of polar codes, still remains an open problem. It
was empirically observed that in the low-SNR region codes
with lower SC decoding error probability provide lower error
probability under list SC decoding. However, in the high-SNR
region the performance of list/stack SC decoding algorithm
depends mainly on code minimum distance. Therefore, we
propose to explicitly construct codes with a given minimum
distance, which would minimize the SC decoding error prob-
ability.

Definition 1. Consider aq-ary input memoryless output sym-
metric channelW (y|c) and an(n = lm, k′, d) codeC′ overFq,
called parent code. LetF ′ be the set of dynamic frozen symbol
indices ofC′ for the case of kernelFl. An (n, k ≤ k′,≥ d)
polar subcodeC of codeC′ is defined as the set of vectors
cn−1
0 = un−1

0 Bl,mF⊗m
l , whereun−1

0 simultaneously satisfies
the dynamic freezing equations(10) for codeC′, and additional
constraintsus = 0 for k′ − k indicess /∈ F ′ with the highest
error probabilitiesPs for a given channelW (y|c).
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Encoding of polar subcodes can be performed as

c = xWA, (15)

wherex is an information vector,W is a matrix, such that
WV T = 0, andV is the dynamic freezing constraint matrix.
This can be considered as pre-coding the data with some outer
code with generator matrixW , and encoding its codeword with
a polar code. However, we do not explicitly specify an outer
code for this construction. Instead, we require that the obtained
codewordc should belong to the parent code with sufficiently
high minimum distance.

Polar codes with CRC [2] and LDPC outer codes [8] can
be considered as a special case of the proposed construction.
However, these codes employ ad-hoc constraints (10). There-
fore, it is difficult to control their minimum distance.

It must be recognized that the SC decoding error probability
P given by (7) of a polar subcode cannot be less than the
SC decoding error probability of a classical polar code of the
same length and dimension, constructed for the same channel
using the same kernelFl. Therefore, polar subcodes provide no
advantage with respect to classical polar codes if SC decoding
is used. However, significant performance gain under list/stack
SC decoding can be obtained. Experiments show that for given
values ofn, k, d polar subcodes with lowerP provide lower
list/stack SC decoding error probability. Hence, one should
selectC′ so that its setF ′ includes as many as possible indices
ji corresponding to symbols with high error probabilityPji .

A. Arikan kernel

1) The construction:We propose to employ EBCH codes
as parent ones in the proposed construction of polar subcodes.
Theorem 2 implies that the indices of the most of the frozen
symbols of EBCH codes have low weight. Bounds (5)–(6) im-
ply that the Bhattacharyya parameter of thei-th bit subchannel
is given byZn,i = O(Z2wt(i)

1,0 ). Hence, employing EBCH codes
as parent ones in the proposed construction enables one to
avoid freezing of bit subchannels with lowZn,i. This improves
the performance of the obtained code under SC decoding and
its variations.

Observe that increasing minimum distance of the parent
code causes more bit subchannels with lowZn,i to be frozen.
In order to keep code dimensionk fixed, one needs to unfreeze
some bits subchannels with highZn,i. This results in higher
SC decoding error probability. This can be compensated to a
certain extent by employing list SC decoding and its variations
with larger list size. Unfortunately, there are still no analytical
techniques for finding a trade-off between the performance and
decoding complexity. We have to use simulations in order to
find optimal values of the code minimum distance.

Example 3. Let us construct a(16, 6, 6) polar subcode of
(16, 7, 6) EBCH code considered in Example 2, by optimizing
it for the case of the binary erasure channel with erasure prob-
ability Z1,0 = 0.5. The vector of bit subchannel Bhattacharyya
parameters (i.e. symbol erasure probabilities) equalsZ16 =
(0.999, 0.992, 0.985, 0.77, 0.96, 0.65, 0.53, 0.1, 0.9, 0.47, 0.35,
3.7·10−2, 0.23, 1.5·10−2, 7.8·10−3, 1.5·10−5). Here the values

corresponding to dynamic frozen symbols of the EBCH code
are underlined. It can be seen thatu3 has the highest erasure
probability 0.77 among not yet frozen symbols. Therefore, we
propose to introduce an additional constraintu3 = 0. This is
equivalent to removing the first row from matricesG1 andG3

presented in Example 1.

Example 4. Consider construction of a(1024, 512) code.
There exists a(1024, 513, 116) EBCH code, which cannot
be decoded efficiently with (list) SC decoder. On the other
hand, the classical polar code optimized for AWGN channel
with Eb/N0 = 2dB has minimum distance 16. One can
take a(1024, 893, 28) EBCH parent codeC′ : RM(5, 10) ⊂
C′ ⊂ RM(8, 10) and freeze381 additional bit subchannels to
obtain a(1024, 512,≥ 28) polar subcode with dynamic frozen
symbols. The specification of the obtained code includes only
f = 20 non-trivial equations(10) with T = 111 terms, so
the cost of evaluation of dynamic frozen symbols is negligible
compared to the cost of multiplication by matrixA.

Observe that the SC decoding error probabilityP of a
(n, k, d) polar subcode of any code cannot be less than
the SC decoding error probabilityP for a classical(n, k)
polar code constructed for the same channel using the same
kernel. However, the performance of a polar subcode under
list/stack SC decoding with sufficiently large list sizeL may
be substantially better. It was empirically observed that the
size of the listL needed to obtain such gain increases with
P . Hence, one needs to quantify the value ofP/P needed
to obtain a given minimum distanced. However, it would be
easier to characterize the rate of a polar subcode with a given
minimum distance, such that it has the same SC decoding error
probability as a given classical polar code of the same length.

Let C be a polar code with kernelF2 of rate ρ(z), such
that all symbols withZn,i < z are not frozen. Consider
now an (n, k, d) polar subcodeC of rate ρ(z, d) = k/n,
obtained from a(n = 2m, k′ = β(m, d)n, d) EBCH code
C′ by freezing all symbolsui with Zn,i ≥ z. The set
of non-frozen symbols of codeC can be represented as
∆(d, z) = ∪m−1

r=0

(
∆(r,m, z) \ F ′

d,r

)
, where∆(r,m, z) =

{i|0 ≤ i < 2m,wt(i) = r, Z2m,i < z}, andF ′
d,r is the set of

dynamic frozen symbol indicesue of C′, such thatwt(e) = r.

It is quite difficult to find|∆(r,m, z)| analytically, although
it can be computed in polynomial time for any specific binary
input output symmetric memoryless channel and valuesr,m
[25]. Therefore, we propose to approximate it by employing an
asymptotic expression for the fraction of common non-frozen
symbols of a RM code of rateR(m−r,m) = 2−m

∑m−r
j=0

(
m
j

)

and a polar code of lengthn = 2m and rate ρ. This
value was shown in [34] to converge withm → ∞ to
φ(ρ, r,m) = Cmin

(
ρ
C , R(m− r,m)

)
, whereC is the capac-

ity of the considered channel. Hence, the2−m|∆(r,m, z)| ≈
φ(ρ(z), r,m)− φ(ρ(z), r + 1,m).

Therefore, one obtains

|∆(r,m, z) \ F ′
d,r| ≥ max(0, |∆(r,m, z)| − |F ′

d,r|), (16)



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 2, FEBRUARY 2016 8

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  20  40  60  80  100  120  140

C
od

e 
ra

te

d

Lower bound
Empiric

Fig. 5. Rate of polar subcodes of length 1024

so that

ρ(z, d) ≥ 2−m
m∑

r=0

max(0, |∆(r,m, z)| − |F ′
d,r|)

≈
m∑

r=0

max
(
0, φ(ρ(z), r,m)− φ(ρ(z), r + 1,m)−Nr2

−m
)
,

whereNr is given by Theorem 2.
Figure 5 illustrates this bound together with the actual rate of

(n, k, d) polar subcodes of EBCH codes of lengthn = 1024.
The dimensionk of these subcodes was selected so that they
achieve approximately the same successive cancellation decod-
ing error probability atEs/N0 = −1 dB as the classical Arikan
polar code(1024, 512, 16) constructed for the same value of
Es/N0. It can be seen that the bound is quite loose. This is both
due to (16), which assumes that all dynamic frozen symbols
induced by the EBCH code correspond to subchannels with
the lowest possible Bhattacharyya parameters, and application
of an asymptotic expression for approximation of|∆(r,m, z)|.

It can be seen that the degradation of polar subcode rate
with respect to a classical polar code is negligible ford up to
twice the minimum distance of the original polar code.

2) Encoding and Decoding Complexity:Encoding of the
proposed polar subcodes of binary EBCH codes can be
performed via (15) with complexityCW + 1

2n logn, where
CW = T − f is the cost of multiplication by matrixW ,
T is the number of terms in the right-hand side of non-
trivial equations (10), andf ≤ ∑t Nt is the number of such
equations. Systematic encoding can be implemented using the
approach introduced in [35] with complexityCW + n logn.

Theorem 2 implies that the set of dynamic frozen symbol
indices for a parent EBCH code includes only the ones
with sufficiently small weight. Furthermore, one can see that
a dynamic freezing equation for symbolui cannot involve
symbolsuj : wt(j) > wt(i). On the other hand, most of
the constraintsus = 0, imposed on bit subchannels with high
error probabilityPs, correspond to low-weight integerss. This

causesf to be much less than the value
∑

t Nt predicted by
Theorem 2 for the parent code, so that matrixW appears to be
sparse. This was illustrated in Example 4. Hence, the encoding
complexity of the proposed polar subcodes does not exceed
that of polar codes withf -bit CRC.

Decoding of polar subcodes can be performed using the
same algorithms as classical polar codes, which should be
augmented with a subroutine for evaluation of dynamic frozen
symbols. Hence, the number of operations with probabilities
or log-likelihood ratios remains the same as in the case of
classical polar codes. However, the cost of bit manipulations
increases at least byO(CW ). For example, in the case of Tal-
Vardy list decoding algorithm and its derivatives, the values
uj , which are needed for evaluation of the dynamic frozen
symbols, are not stored explicitly. One should either introduce
for each path an additional array of sizef , where the values of
dynamic frozen symbols are accumulated, or recoveruj from
intermediate values. In the first case the decoding complexity
increases byfLn + CWL bit operations, whereL is the
list size, since the additional arrays need to be copied while
cloning the paths. In the second case the complexity depends
on the specific structure of dynamic freezing constraints.

The sequential decoding algorithm [5] and its block general-
ization [36] were shown to be able to decode polar codes with
very low average complexity and good performance. These
algorithms can be naturally used in the case of polar subcodes.

B. Improved polar subcodes with Arikan kernel

Let us consider a(n = 2m, k, d) polar subcode constructed
as described in Section V-A. It can be represented as an IGCC
with outer codes of length2s, s < m. It appears that most
outer codes obtained in this way are classical Arikan polar
codes with quite low minimum distance and high decoding
error probability. Therefore we propose to employ the approach
suggested in [37]. Namely, we impose the requirement on outer
codes to be(2s, ki, di) EBCH codes (or their subcodes). The
parameterski, di are selected in order to minimize the MSD
error probability, which is given by

P = 1−
2m−s−1∏

i=0

(1− πi)

under the constraint
∑2m−s−1

i=0 ki = k. Here πi denotes the
decoding error probability of the code utilized at thei-th
level of the IGCC. These probabilities can be estimated, for
example, using the tangential sphere bound [38] together with
density evolution [25] or Gaussian approximation [9].

The obtained IGCC can be also represented via a system of
equations (10). The corresponding matrixV is given by

V =




V ′

V0 0 . . . 0
0 V1 . . . 0
...

...
. . .

...
0 0 . . . V2m−s−1




,
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


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0
1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0
1 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0
1 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 0
1 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0
1 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1




Fig. 6. Extended BCH kernelF32

where V ′ is a constraint matrix for a parent(2m,K ≥
k, d) EBCH code, andVi are constraint matrices for outer
(2s, ki, di) codes.

The codes obtained in this way are supposed to be decoded
by the block sequential decoding algorithm [36] with block
size at least2s. This algorithm employs the fast tree-trellis
list Viterbi algorithm [39] for decoding of outer codes of the
IGCC. However, more efficient decoding techniques can be
designed for specific outer codes.

The proposed approach can be considered as a general-
ization of the construction suggested in [40]. The Mondelli-
Hassani-Urbanke codes can be considered as GCC with inner
Arikan codes and outer RM or polar codes. Since EBCH
codes provide higher minimum distance, one may expect the
improved polar subcodes to provide better performance.

C. Polar subcodes with EBCH kernel

For l = 2µ an extended BCH kernel can be obtained as
matrix Fl, where ((Fl)i+1,1, . . . , (Fl)i+1,l−1) is a vector of
coefficients ofxjgi′(x), wheregi′(x) is a generator polynomial
of a (l − 1, l − 1 − i′) BCH code, andj is the smallest non-
negative integer, such thati = j + i′. Furthermore, one has
(Fl)0,0 = 1 and(Fl)i+1,0 =

∑l−1
j=1(Fl)i+1,j . Figure 6 presents

an example of the EBCH kernel.
Let C(q, s,m, J) be a code overFq of length qsm,

which consists of evaluation vectors ofm-variate
polynomials 1

(qs−1)mA(x0, . . . , xm−1), such that all
their coefficients Aj0,...,jm−1 are equal to zero for
(j0, . . . , jm−1) ∈ J , in various points(x0, . . . , xm−1) ∈ Fm

qs .
Let L(h) = {(j0, . . . , jm−1)|0 ≤ ji < qs,

∑
i ji > h},

and L∗(h) =
{
j =

∑m−1
i=0 jiq

si|(j0, . . . , jm−1) ∈ L(h)
}

.

It was shown in [41] that codesC(q, s,m,L(h)) and
C(q, sm, 1, L∗(h)) are equivalent. That is, these codes can
be considered as GCC with inner and outer extended cyclic
codes. Furthermore, outer codes in this construction can be

recursively decomposed in the same way. This implies that an
EBCH code has a supercode, which is equivalent to a GCC
with inner and outer extended cyclic codes. This is similar to
the fact of existence of a RM supercode for any EBCH code,
which was used above to show that EBCH codes have “not
so bad” set of dynamic frozen symbol indices in the case of
Arikan polarizing transformation.

Therefore, we propose the following code construction. Let
C′ be an(2µm, k′, d) EBCH code, such that itst-th locator is
xt =

∑m−1
j=0 βtjγj , where(γ0, . . . , γm−1) is a basis ofF2µm

considered as a vector space overF2µ , t =
∑m−1

j=0 tj2
µj , 0 ≤

tj < 2µ, andβi is thei-th element ofF2µ . The above described
construction of EBCH kernel corresponds to the caseβ0 =
0, βi = αi−1, 1 ≤ i < 2µ, whereα is a primitive element
of F2µ . Then one can construct polar subcode ofC′ using the
polarizing transformationA = Bl,mF⊗m

l .
The proposed construction requires one to be able to

compute symbol error probabilitiesPi. To the best of our
knowledge, there are still no analytical techniques for solving
this problem, except for the case of the binary erasure channel
[42]. Therefore, we use simulations to obtain these values.

The obtained polar subcode can be considered as an instance
of the IGCC introduced in Section III. Indeed, let us consider a
subsetFs = {ji ∈ F| ⌊ji/l⌋ = s} of the set of dynamic frozen
symbol indices corresponding to thes-th block,0 ≤ s < lm−1,
and letV (s) be the corresponding|Fs| × lm submatrix ofV .
It can be assumed without loss of generality thatV (s) has
an identity submatrix in columns with indices inFs, so that
V (s) = (∆s| (Σs|I)Πs︸ ︷︷ ︸

|Fs|×l

|0), whereΠs is a l × l permutation

matrix, and∆s,Σs are some matrices. Therefore, one obtains
a system of equations

uslm−1+l−1
slm−1 ((Σs|I)Πs)

T = uslm−1−1
0 ∆T

s .

Its solution is given by

uslm−1+l−1
slm−1 = v(I|Σs)Πs + uslm−1−1

0 ∆T
s (0|I)Πs,

where v is an arbitrary vector inFl−|Fs|
2 . Hence, instead

of successive decoding of symbolsuslm−1 , . . . , uslm−1+l−1

according to (11), one can recover them jointly by decoding
in a cosetxs + Cs, whereCs is a code generated by matrix
(I|Σs)ΠsFl, and xs = uslm−1−1

0 ∆T
s (0|I)ΠsFl, as shown in

Figure 2. This enables one to improve the performance and/or
reduce the decoding complexity.

D. Reed-Solomon kernel

The results of [41] allow us to extend the proposed construc-
tion of polar subcodes of EBCH codes to the case of Reed-
Solomon (RS) kernel overFq. The RS kernel is given by matrix
Fl, where(Fl)i,j = βl−1−i

j , andβj are some distinct elements
of Fq, l ≤ q. It was shown in [23] that forl ≤ q the Reed-
Solomon kernel provides the highest possible polarizationrate.
However, polar codes with RS kernel still suffer from low
minimum distance.
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Fig. 7. Performance of polar subcodes with Arikan kernel of length 1024

In order to obtain a code with better performance, one
can set l = q and represent an(n = qm, k′, d) EBCH
code of lengthqm over Fq, such that itst-th locator is
xt =

∑m−1
j=0 βtjγj , where(γ0, . . . , γm−1) is a basis ofFqm

considered as a vector space overFq, t =
∑m−1

j=0 tjq
j , 0 ≤

tj < qm, via a system of equations (10), and introduce
additionallyk′ − k static freezing constraintsui = 0 for non-
frozen subchannelsW (i)

n with the highest error probability.
Again, simulations have to be used for performance evaluation
of bit subchannels. The obtained codes can be decoded using
the techniques presented in [6], [43].

Example 5. Consider construction of a(16, 8, 6) polar sub-
code overF4. The4× 4 Reed-Solomon kernel is given by

F4 =



0 1 1 1
0 1 β + 1 β
0 1 β β + 1
1 1 1 1


 ,

whereβ is a primitive element ofF4. The check matrix of the
(16, 9, 6) parent EBCH code is

H =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 β β2 0 1 β β2 0 1 β β2 0 1 β β2

0 0 0 0 1 1 1 1 β β β β β2 β2 β2 β2

0 1 β2 β β β2 1 0 1 0 β β2 β2 β 0 1
0 0 0 0 1 1 1 1 β2 β2 β2 β2 β β β β
0 1 1 1 β 1 0 β β β 1 0 β 0 β 1
0 0 0 0 β2 β2 β β β2 β β2 β β2 β β β2




This corresponds to the following constraint matrix for the

polarizing transformationA = B4,2F
⊗2
4 :

V =




0 0 0 0 0 0 1 0 0 β2 0 0 1 0 0 0
0 0 0 β2 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




.

In the case of transmission of a binary image of the output of
the polarizing transformationA over the AWGN channel with
Es/N0 = −1 dB, the symbol error probabilities were found
to be(0.74, 0.7, 0.55, 0.27, 0.58, 0.33, 0.12, 0.02, 0.23, 0.04, 4 ·
10−3, 2 · 10−4, 0.03, 4 · 10−4, 3 · 10−6, < 10−6). Hence, we
propose to set additionallyu5 = 0.

VI. N UMERIC RESULTS

In this section we present simulation results illustrating
the performance of proposed polar subcodes of EBCH codes
in the case of AWGN channel and BPSK modulation. For
comparison, we present also the results for the case of classical
polar codes with the corresponding kernels, polar codes with
Arikan kernel and CRC-16 (Arikan-CRC) [2], LTE turbo code,
as well as LDPC codes specified in WiMAX and CCSDS
standards. For polar subcodes with Arikan kernel we have used
the block sequential (BS(s)) [36] decoding algorithm1, where
2s is the length of outer codes in the IGCC representation
of the corresponding polar subcode. For polar codes with the
BCH kernel, the sequential decoding algorithm [7] was used,
which is based on the order-statistics soft-input hard-output
decoding of the component codes. Both probability-domain

1For s ≤ 3 the block sequential decoding algorithm provides slightly
inferior performance compared to the probability-domain implementation of
the Tal-Vardy list decoding algorithm with the same list size L, but requires
much smaller number of arithmetic operations.
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Fig. 8. Decoding complexity for polar subcodes with Arikan kernel

implementation of the Tal-Vardy list decoding algorithm (TV)
and the block sequential decoding algorithm were used for
decoding of polar codes with Arikan kernel an CRC. Observe
that in the case of polar codes with CRC the block sequen-
tial decoding algorithm provides slightly worse performance
compared to the original Tal-Vardy algorithm, but has much
lower complexity. Belief propagation algorithm with flooding
schedule was used for decoding of LDPC codes.

Figure 7 illustrates the performance of codes2 of length
≈ 1024. It can be seen that polar subcodes of EBCH codes
provide significant performance gain with respect to the clas-
sical polar codes of the same code length and dimension.
Furthermore, they outperform polar codes with Arikan kernel
and CRC. Observe that increasings in the case of the block
sequential decoding algorithm, i.e. employing in the decoder a
representation of a polar subcode as an IGCC with longer outer
codes, results in better performance. The best performance
is achieved by improved polar subcodes, where outer EBCH
codes of length32 were selected so that the MSD error
probability of the corresponding IGCC is minimized.

Figure 8 illustrates the average number of summation op-
erations performed by the block sequential and belief prop-
agation decoding algorithms for the case of polar subcodes
and LDPC codes, respectively. Observe that decoding polar
subcodes requires slightly lower average number of operations
compared to polar codes with CRC, since the dynamic freezing
constraints prevent the sequential decoder from constructing
wrong paths up to the final phase of decoding.

It can be also seen that fors = 3 decoding of polar codes
requires 10 times less operations compared to LDPC codes. For
s = 5 the complexity becomes comparable. Furthermore, the
average number of operations for the case ofL = 256, s = 3
is less than in the case ofL = 32, s = 5. From these results
one may conclude that it is more advantageous to increase

2In order to ensure reproducibility of the results, we have set up a web site
http://dcn.icc.spbstu.ru/index.php?id=polar containing the specifications of the
considered polar subcodes with Arikan kernel.

L instead ofs. However, increasings enables one to use
the improved construction of polar subcodes. We also believe
that the block sequential decoding algorithm can be further
simplified by employing more efficient decoding algorithms
for outer EBCH codes.

Figure 9 presents the performance of codes of length2048.
It can be seen that the proposed improved polar subcodes
with Arikan kernel provide substantially better performance
compared to the case of LDPC and turbo codes. Observe that
increasing minimum distance of the polar subcode results in
better performance in the high SNR region. For comparison,
we provide also the results for the MHU construction, repro-
duced from [40]. As it may be expected, the improved polar
subcode, which employs EBCH outer codes, provides better
performance than the MHU code, which employs outer RM
and Arikan polar codes. For comparison, we report also results
for the case of a GCC with outer EBCH codes of length32,
which was obtained as described in [37], and decoded with the
block sequential algorithm. It appears that some of the outer
codes of the IGCC corresponding to the improved polar sub-
code, which correspond to good bit subchannels, have higher
rate, while those corresponding to bad bit subchannels have
lower rate than in the case of the classical GCC optimized for
the same SNR. This causes the performance of the improved
polar subcode to be better than that of the classical GCC.

Figure 10(a) presents the performance of codes with the
EBCH kernelF32. It can be seen that these codes outperform
those with Arikan kernel. For the case of polar subcodes, even
better performance can be obtained by increasing the list size
L at the cost of higher decoding complexity. Figure 10(b)
presents the performance of the binary image of polar codes
and polar subcodes with4×4 Reed-Solomon kernel overF22 .
It can be seen that classical polar codes with Reed-Solomon
kernel have quite low minimum distance, similarly to the case
of Arikan kernel, but still provide better performance compared
to a polar code with Arikan kernel with comparable param-
eters. In both cases employing the proposed construction of
polar subcodes of EBCH codes results in improved minimum
distance and even better performance compared to the codes
presented in Figures 7(a) and 9(b).

VII. C ONCLUSIONS

In this paper the construction of polar subcodes of linear
block codes was introduced, which is based on the concept of
dynamic frozen symbols. It enables one to obtain codes with
higher minimum distance than classical polar codes, which
can still be efficiently decoded using the derivatives of thelist
successive cancellation algorithm. Although we do not have
a proof that the proposed codes achieve the channel capacity,
they were shown to outperform some of the existing LDPC and
turbo codes of moderate lengths. Many existing constructions
based on polar codes, such as polar codes with CRC, can be
considered as a special case of the proposed polar subcodes.

Unfortunately, due to lack of analytical techniques for pre-
dicting the performance of list/stack SC decoding algorithms,
heuristical methods were used in this paper to construct the
codes. Any progress in the performance analysis of these
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Fig. 9. Performance of codes of length 2048
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algorithms may lead to design of better codes. Another way to
improve the performance of the proposed codes is to use longer
outer EBCH codes. This, however, requires development of
efficient list soft decision decoding algorithms for them.

Furthermore, an extension of the concept of generalized
concatenated codes was provided, as well as a new method
for representing linear block codes in a form, which enables
application of the SC algorithm and its variations for their
decoding. This approach enables one to construct polar sub-
codes with improved performance, as well as a more efficient
decoding algorithm for them. It allows also near-ML decoding
of short Reed-Solomon codes [44]–[46].
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