IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, 8. 2, FEBRUARY 2016 1
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. distance than comparable RM codes, and are therefore likely
Abstract—An extension of polar codes is proposed, which allows to provide better finite length performance. However, treee
some of the frozen symbols, called dynamic frozen symbolsot still no efficient MAP decoding algorithms for these codes.
be data-dependent. A construction of polar codes with dynam _ It was suggested in [17] to construct subcodes of RM codes,
frozen symbols, being subcodes of extended BCH codes, is \hich can be efficiently decoded by a recursive list decoding

proposed. The proposed codes have higher minimum distance . . . .
than classical polar codes, but still can be efficiently deated algorithm. In this paper we generalize this approach, and

using the successive cancellation algorithm and its exteiosis. The propose a code construction "in between” p(_)lar codes and
codes with Arikan, extended BCH and Reed-Solomon kernel are  EBCH codes. The proposed codes can be efficiently decodec
considered. The proposed codes are shown to outperform LDPC Using the techniques developed in the area of polar coding,
and turbo codes, as well as polar codes with CRC. but provide much higher minimum distance, which can be
accurately controlled. The obtained codes outperformestat
of-the art LDPC, turbo and polar codes. More specifically,
in Section Ill we introduce an extension of generalized con-
catenated codes (GCC), called interlinked generalizedaten
I. INTRODUCTION nated codes (IGCC). Recursive application of this contitbnc

Polar codes were recently shown to be able to achievenables one to represent a linear block code in a form which,
the capacity of binary input memoryless output-symmetridn principle, enables its decoding by the SC algorithm (Sec-
channels [1]. Low-complexity construction, encoding ard d tion V). This form, called polar codes with dynamic frozen
coding algorithms are available for polar codes. Howeves, t Symbols, can be considered as a generalization of polasscode
performance of polar codes of moderate length appears to B&e show that EBCH codes are particularly well suited for
quite poor. This is both due to suboptimality of the successuch representation, although their SC decoding is still no
sive cancellation (SC) decoding algorithm and low minimumvery efficient. Furthermore, we present a special case o0GC
distance of polar codes. The first problem can be solved bgalled polar subcodes, with good performance under the SC
employing list/stack SC decoding techniques [2]-[7], whic algorithm and its derivatives (Section V). The proposedesod
far outperform the SC algorithm. Alternatively, one can tiee ~ are subcodes of EBCH codes. We consider polar subcodes
belief propagation algorithm [8]. Its performance, howeve  With Arikan, EBCH and Reed-Solomon kernel. Simulation
still inferior to list/stack SC decoding. results presented in Section VI show that the proposed codes

The second problem can be solved by constructing a gerputperform state-of-the-art polar, LDPC and turbo codes.
eralized concatenated code with inner polar codes [9]+[11]
or employing a serial concatenation of an error detecting or
error correcting code and a polar code [2], [8], [12]-[14].
However, in the second case it is not clear how the parametegs Generalized concatenated codes

of the outer codes affect the minimum distance and finite- .
length performance of the concatenated code. A generallz_ed conca_tenated code_ (GCC) [18] oWy
defined using a family of nested innén, k;,d;) codes

It was shown recently that a sequence of linear codey ~ Co 5 G S and a family of outer
i i D - 0 1 e v—1,
achieves capacity on a memoryless erasure channel under M N, K;. D;) codesC;, where the-th outer code is defined over

decoding if their blocklengths are strictly increasingtema ; - . . .
converge to some < (0,1), and the permutation group of Forizrips, 0 <4 <w,k, = 0. It will be assumed in this paper

each code is doubly transitive [15], [16]. This class of code thatki = ki“tl’ v=n. LetdgébeGagén maér_ix, such tfhat itsd
includes Reed-Muller (RM) and extended primitive narrow-OWSt - .., n—1 generate code;. encoaing Is performe
sense BCH (EBCH) codes. Observe that RM codes can %E follows. First, partition a data vector intoblocks of size

Keywords—Polar codes, generalized concatenated codes, BCH
codes, Reed-Solomon codes.
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considered as a special case of polar codes. On the othdy:0 < 7 < n. Second, encode these blocks with codgdo

hand, EBCH codes are known to have much higher minimun’g’~ tain codewordsé; o, ..., & n—1). Finally, multiply vectors

€0.js---,tn-1,4),0 < j < N, byg to obtain a GCC codeword
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The SC decoding algorithm at phasé computes
Wi (g " g fug),wi € Fy (08 Wi (uplyp ™), which is
more convenient for implementation), and makes decisions

o [ormmasucr, WO, g F o
’ 0, otherwise

(CO.()" N ~ﬁ,,,|_‘\r 1 )

———p
Inner Encoder

This decision is used at subsequent steps instead of the tru
value ofu; to determine the values af;11,...,u,—1. It was
shown in [1] that these calculations can be implemented with

Fig. 1. Encoding with a generalized concatenated code

Out
™ deczdeerrol > complexityO(n logn). For example, in the case bf 2, ¢ =
Inner de‘zg;‘: L v > 2 these probabilities can be computed as
™ Decoder ,.| Outer . 2% 2 1
" | decoder 2 lV YV Wr(L 9 (u01|y61 ) =
| Outer

VM i W(i)(u2i+1 @ 2] |y%—1)W(i)(u2i+1 y> 1) ()

n 0,even 0,0dd170 n 0,0dd !9 %

Fig. 2. Multistage decoding u2i+1=0 : ! !
WD g ) = ;
whereG( is a generator matrix of;, andg; — denotes the W (w271 @ w2t L |y~ YW (W2t L ynty. ®)
i-th row of G. It is possible to show that this encoding method  * ’ ' 2 ’ 2 _
results in a(Nn, Y.~ K;,> min; d; D;) linear block code. For ¢ = 2 the Bhattacharyya parametefs,; of the bit

GCC can be decoded with a multistage decoding (MSD}subchanneldV,\” (y2~!, ui~"|u;) satisfy [22]

algorithm [19]-[21]. Fori = 0,1,..., N — 1, this algorithm A, i A

takes as input noisy instances; of codeword symbols Zjri < Znjityg 2702, (4)
¢,j,0 <t <n,0<j <N, successively computes estimates
of ¢; ; using a SISO decoder @}, and passes these estimates
to a decoder ofC; to recover the corresponding codeword.
Then it proceeds with decoding 6, andC,,,, as shown - :

in Figure 2. The performance of the MSD algorithm depend%zb:iyﬁr rr? oTeQb r':a?:zstgzgsrizgs_az Ef]mng] kernel), one can
strongly on parameters of outer codes. An extensive suriey o

various methods for their selection can be found in [21]. Do [o _ 22/2,2' < Zoi <2%, 0. — ZTQL/% (5)

B. Polar codes Zn2ivs =253 ;- (6)
(n = I, k) polar code overl, is a linear block code Furthermore, for the case of the binary erasure channel, one

generated byt rows of matrix A = By, F®", whereB;,,  hasZ, = 229, — 2721/2 i

where Z; o is the Bhattacharryya parameter of the original
binary memoryless symmetric channel, ahd 0 < i < [, are
partial distances of matri¥;. Similar bounds are provided in

is the digit-reversal permutation matri¥; is al x [ matrix Let P, =1— P{C;|Cy,...,C;_1} be the error probability
called kemel (e.gF, = (- V) is the Arikan kernel), ©f Symbolu; under SC decoding, wher€; is the event
11 corresponding to correct estimation of symhgl Then the

and @m denotesm-times Kronecker product of the matrix SC decoding error probability is given by

with itself [1]. The digit-reversal permutation maps inéeg

i= Y0 < i < 1 onto 3 tigmeid, The p=1-JJa-p) ()
particular rows to be used in a generator matrix are selestted i¢F

that the error probability under the below described susives  piiant techniques are available for computiRgin the case
cancellation (SC) decoding algorithm is minimized. Heree, of Arikan kernel [9], [25]. The standard way to construct

cc;]deword Ef g (;Iassi;::al po(lja;_code ig obtainedlcas “tﬁ practical polar codes is to selegtas the set ofi — k indices
wherew; = 0,0 € F, and 7 C {0,...,n—1} iS the 3\ the highest error probability?;.

set of n — k frozen symbol indices. It is possible to show For anys,0 < s < m, polar codes can be considered as
that matrix A transforms the original binary input memory- GCC with iﬁner codes denerated by the rows of maﬁ,&s
Ieszg)outplljt-sermetric channi;” (y]c) into bit subchannels and outer codes generated by some submatriceg6f' ).

n (Yo ,ug |ui), the capacities of these subchannels con-The S¢ decoding algorithm can be considered as an instance o
verge withm to 0 or 1 symbols per channel use, and the {he MSD method, where symbol-by-symbol decoding of outer
fraction of subchannels with capacity close Toconverges cqdes is used. It was shown in [9] that significant perforreanc

to the capacity of /" (ylc). Here a, = (as,...,a:), and  improvement can be achieved by employing near-ML decoding
Yo,---,yn—1 are the noisy symbols obtained by transmittingalgorithms for outer codes. Even better performance can be
codeword symbolsy, ..., c,,—1 over a binary input memory- obtained by employing list or stack decoding algorithms-[2]

less output-symmetric channﬁfl(o) (ylu). [6]. These algorithms keep track of a number of vecﬁﬁr‘sl,
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u"”__.@ CopCorolonr) the minimum distance of the obtained code. Obviously, for
any pair of non-negative integetsk : n > k, if there exists
@ o omer Eveoder 1 1w b Ghor i) a (n, k,d) GCC, then there also exists(g, k,> d) IGCC.
The MSD algorithm can be used to decode IGCC. However,
£ nner | @ortrnn) one needs to perform decoding not in outer codes, but in their
e o ouer reader 5 LD GoCGa) L Encoder > cosets. _This can be done with_ any det_:oder((f@r provided
il that its input LLRs are appropriately adjusted.
L L S
(3) s Y (Ez.wa Gyt
! 4’| °“‘e'E"°°dEf3rL> D > B. Generalized Plotkin decomposition of linear codes

Fig. 3. Interlinked generalized concatenated code As a special case of IGCC, which corresponds to the case
1 0
1 1)

and at each step increase the length of one or more of the%\f con?ider_ an e?iltet?sion c()jf E)hel clatssi((:ial Plotkin consitlr_uci_
vectors by1, and compute probabilities’(" (a4 |y—) (or is extension will be used below to derive a generalization

related values). Vectors with low probabilities are disest, of Arikan polar cades.
so that there are at mostvectors of length for eachi. The  Theorem 1. Any linear (2n, k,d) codeC has a generator

of inner codes generated by rows 6f = F;, =

worst-case complexity of these algorithmsi$Ln logn). matrix given by
C. BCH codes =~ (G1 0
I, 0 I !
An (n = ¢™ k,> d) extended primitive narrow-sense G= ( 81 7 0) Gy G2, (8)
BCH (EBCH) code is a set of vectorg, ™! € F7, such b2 Gs G

that 7' ¢z = 0,0 < j < d — 1, where (zq, ..., Zn_1)

is a vector of distinct values of ,~, called code locators. wherel; is al x [ identity matrix,G;,1 <i < 3, are k; x n

Settingzy = 0,2; = o' 1,1 < i < n, results in an matrices,k = k; + ko, and I is obtained by stacking &; —

extended cyclic code with generator polynomigle) = ks) x ks zero matrix andly, , whereks < k;.

LCOM (My(x),..., Mg _o(x)), where M;(x) is a minimal _ - L , .

polynomial ofa?, anda is a primitive element of . How- Proof: Let G = (G’ G"), whereG’ andG” are some

ever, in this paper, unless stated otherwise, it will be mesti £ < 7 rr)atrlcss, be a generator matrix of the code, and let

that z;; are arranged in the standard digit order, where= g :b(H H") be the Eo”?stlf?ondlfng ptaflty Che?'lélran(?{tr’l)i Let
m=1ly 5 o Nm-ly 5oy _ 2 be a maximum rank solution of matrix equati

2jmo Xiabin 1= 2 jmg Xigg!, Xi € {00~ 1), and H")T = 0. Gaussian elimination can be L?SGd to construct

Bo, - - -, Bm—1 IS some basis df ;. By abuse of notation¥; ; G0
denotes here both an integer, and the corresponding element _ . ~ 5 . . .
of F 9 P d matrix G = QG = <G4 G3>, such that@ is an invertible
a Gy Gs
matrix, rows ofGs are linearly independent with rows 6fs,
I1l. I NTERLINKED GENERALIZED CONCATENATED andk = ko + ks + ks. It can be seen that
CODES
A. The construction G 0

In this section we present an extension of the generalized a— 185 IO 8 IO Gy—Gs 0 )
concatenated codes, called interlinked GCC (IGCC). This oy (’“)3 I 83 Gs Gs |-
extension can be used to represent a broad class of linear k2 Gs Gs

block codes. It enables one to decode such codes using the

techniques developed in the area of generalized concaténat G
and multilevel coding. These decoding algorithms, howeverThen the statement follows by settiidgy = (G —5G .
are not guaranteed to perform well for an arbitrary IGCC. But . 4 3

it will be shown below how to construct IGCC with good Another way to construot; is to computeG’ + G”, and
performance under MSD (actually, SC) and its list extension eliminate linearly dependent rows from the obtained matrix

Interlinked GCC encodes the subvecidt) ¢ Fff of the Classical Plotkin concatenation of two codes corresponds
data vector not with the outer cod®;, as in the classical to the case oft; = 0, so the representation of a generator
GCC, but with its coset given b{; + (Zi:lo MONVACORN matrix in the form (8) will be referred to as a generalized

Plotkin decomposition (GPD) aff or the corresponding code
C. Applying the GPD to equivalent codes may result in codes
C;,C2 with different dimensions and performance.

where M (9 ¢ FE:xN gre some matrices, as shown in
Figure 3. This results in a linear block code of lengéin and

dimensiony_""" K;. It is, however, quite difficult to estimate
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1000000000000000 1 ? (1)
1000000010000000 5
1000100000000000 | |1 « o«
1000100010001000 | [+ 1fe I+
1010000000000000 1 a Itat+ta +a
1010000010100000 1 l+a 1+ a
1010101000000000 1 ol+a) 1+a?
15[1010101010101010 | |1 14+a+a® l14+a+a®+a’|
%% 11100000000000000 1 a® 1+0o? =0.
1100000011000000 1 1+a° 1+«
1100110000000000 1 a(l+a?) 1
1100110011001100 1 l14a+ad 1
1111000000000000 1 a®(1+a) 1+a
1111000011110000 1 1+a?+a? o
ITTT00000000 [ |1 arayary 1
11—&—04—}—042—}—043 a®

Example 1. Consider a(16,7,6) EBCH code generated by polarizing transformation. Sincel is invertible, any vector

of lengthn can be obtained as an outptjt ' = uj 'A of

é? 8 i 8 i (1) (1) (1) (1) 8 i 8 i (1)(1) the_ polarizing trans_formation. ]_etl us investigate the ti@sts
0011001100110011 which need to be imposed arj ", so that the output of the
¢=10000111100001111 polarizing transfqrmatlon is a codeword @f_ »
001010T100011000 These constraints are given by the equatijn AHT = 0.
10000010/11011000 By applying Gaussian elimination, one can construct the
1111111100000000 cons_tralnt matrixV = QHAT, wh_ere Q is an lnvertlb_le
matrix, such that all rows of/ end in distinct columns, i.e.
00110011 the valuesj; = max {t|V;; # 0} ,0 < i < n — k are distinct.
Its GPD is given byG, = <o 101101 o) .Gy = It can be assumed without loss of generality thaj, = —1.
11111111 Let F = {4;|0 <1i < n — k}. Then one obtains
10010110 it
01010101 00011000 .
00110011 ’G3(11011000)' uj, =) usVis, 0<i<n—k. (10)
00001111 s=0

These equations can be considered as a generalization of th
goncept of frozen symbols, i.e. constraints of the farm =

0,7; € F, used in the construction of polar codes. Observe
that symbolsu;,,j; € F can take arbitrary values, which,
however, depend on the values of some other symbols with
smaller indices. Therefore, symbals, given by (10) will be
referred to as dynamic frozen symbols.

GPD enables one to perform hard-decision decoding of cod
C as follows. LetC; be the code generated lgy;. Consider a
noisy codewordy’|y”) = (c'|¢") + (¢’|e”), wheree = (¢|e”)
is an error vector. Compute= y'+y"” = (' +¢")+ (¢ +¢").
One can decode in C; to identify information vector,’ and
codeword’+-c” = u'G. If this step is completed successfully,
one can computg’ =y —u/'(G1+1Gs) andyg” =y —u'IG3,
and try to decode these vectorsdn. This algorithm can be Example 2. Consider(16,7,6) EBCH codeC over F,. The
easily tailored to implement soft-decision decoding. generator polynomial of the corresponding non-extendeateco

One can see from (8) th&, has minimum distancé, > has rootsa, a® and their conjugates, where is a primitive
d/2. However,d; can be very low. Hence, the above describedoot of z* 4+ 23 + 1. The constraints on vectar}®, such that
algorithm may fail to correct even< |(d —1)/2] errors. A ul®A € C, are given by the equation at the top of this page.
workaround for this problem is to employ list decoding far ~ Multiplying matrices, expanding their elements in the sz
to identify a number of possible vectous, for each of them basis and applying elementary linear operations, one ofstai
decode the corresponding vectarsy” in Co, and select the T

codeword(c’|¢") closest to the received sequence. 0000000000101000
GPD may be also applied recursively. This results in codes 0001010000100000
of length1 and dimension at modt, as discussed below. 0000010001000000
s 0000000010000000
IV. DYNAMIC FROZEN SYMBOLS Yo 8886?86888888888 =0

A. Representation of a linear code for SC decoding 0010000000000000
Consider an(n = ™, k,d) codeC over F, with check 0100000000000000
matrix H. Let A = B;,,F™ be a matrix of ann x n 1000000000000000
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This means thatug = u1 = uo = u4 = ug = 0, and Bhattacharyya parameters (and error probabiiity< %ZW-)

ug = us, ug = uUs, U9 = U3z + us, u12 = uig. Symbols decrease slowly while decreasing the Bhattacharyya paeame
ug, Us, U7, U1, U13, U14, U15 are non-frozen. Z1 o of the original channel. Most of these symbols have high
error probability P;.

The above statement is true only if one employs standard
igit ordering. That is, each coordinatge of a codeword
co,--.,Cn—1) Can be associated with some € Fam, so that

all z; are distinct, and all codewords satisfy check equations

Observe that any linear code of lendgth can be represented
by a system of equations (10). This enables one to emplo
the SC decoding algorithm and its variations for decodingij
of arbitrary linear codes of lengtli™*. That is, one can
successively make decisions

X . _ ) n—1 )
o _ Jargmaxy,er, Wi (ublyy ™), i¢gF (11) Z cr] =0,0<j<d-1 (12)
T i—1 .
Do Us Vs, otherwise i=0

wheret; is an integer, such thgt, = i. Observe that ifs;-' ~ The standard digit ordering is given by = Z;r:ol X5,
are the correct values of the input symbols of the polarizingvhere; = Z;’L:*Ol Xi;27, X ; € {0,1}, and B, . .., Bm_1 iS
transformation, the probability of symbol erré} in this case  some basis 0Fy~. In what follows, more detailed characteri-
remains the same as in the case of classical polar codeseHengation of the set of dynamic frozen symbols for EBCH codes
the error probability of the considered code under SC dexpdi will be derived.
can be still computed via (7). Let

The setF of dynamic frozen symbol indices for a generic ,
linear code is not guaranteed to contain all symbols witthhig C: = {t2° mod 270 < i < my, 2™ =t mod 2™ — 1}
error probability. Hence, for most linear codes the SC dewpd
error probability, given by (7), far exceeds the error piuiliiy
of other decoding algorithms. Substantially better pen@nce
can be obtained by employing list or stack SC decoding tech?_

be a cyclotomic coset generated hylLet Q be the set of
minimal cyclotomic coset representatives. It can be seah th
Il elements of a cyclotomic coset have the same weight.
herefore

nigues. However, the list size (i.e. the decoding comp}gxit m

needed to obtain near-ML performance, in general, inceease Z ms = ( )

exponentially with code dimension. s(E)Q "
wt(s)=r

The complexity of computingV,\” (ub|yn—1) is exactly the
same as in the case of classical polar codes(@.logn).  Theorem 2. Consider a(2™, k, d) extended primitive narrow-
However, evaluation of the expression (10) may increase thgense BCH code ovél,. LetS = {i € Q|0 <i < d — 1}. Let
decoding complexity t@(n?). N, be the number of dynamic frozen symbajdor this code,

such thatwt(i) = ¢t. ThenN; = Zsest ms, Where S; =
B. Extended BCH codes and Arikan kernel {s € S|wt(s) = t}, andm; is the size of the cyclotomic coset

Let us investigate in more details the structure of thedenerated bys.
set of dynamic frozen symbol indices of binary extended Proof: Consider parity check equation (12). Let =
primitive narrow-sense BCH (EBCH) codes for the case ofzz’zol X <Bs, Xis € {0,1}. Then
Arikan polarizing transformation. Observe that in thiseas '
construction of the system of equations (10) can be viewed m—1 J m—1 T ge2!
as a recursive application of the GPD to the considered code. z] = <Z Xi7855> = <Z Xi,sm)

It was shown in [26]—[28] that a punctured RM code of order 5—0 5=0

r and length2™ is equivalent to a cyclic code with generator ,, _; ,,, Jt me1
polynomial g(z) having rootsa* : 1 < wt(i) < m —r,1 < _ x. .52 = S X
1 < 2™ —2, wherex is a primitive element oFy-, andwt(4) tI:[O ; ixshs Zl: % ' E) 87
is the number of non-zero digits in the binary expansion of =~ o E{gflv]f“” -

integeri. Furthermore, it was shown in [29] that an EBCH
codeC’ of length2™ with design distancd > 6(r,m) + 3 is  where v;m-1 € Fym; are some coefficients. Hence, any

a subcode of the RM code of order — r — 1, where codewordcog* satisfies
§(r,m) = m(a)x min {72’ mod (2™ —1)|0 < j <m}. n—1 m—1
wt(i)=r es Q
. | o IEND SRS S | BN
A recursive expression faf(r, m) is derived in [29]. One can wi (e 1) <wt(5) i=0  s=0
consider a RM code of ordet» — r — 1 as a polar code e {01}

with the set of frozen symbol indice8” = {i| wt(i) < r}. .

Hence, the set of dynamic frozen symbol indic&é for ~ whereS = {;j2|j € 5,0 <1 < m;,j2™ = j mod 2™ — 1}.
the EBCH code includest”. It can be seen from (5)—(6) It can be seen that thé-th row of A = By, F5™
that Z,,; = O(Zf‘ff(”). Hence, the set of frozen symbols is a sequence of values of various monomi&s®

m—

for EBCH codes includes all those ones, such that theiﬂszo1 Xgm' 70 as € {0,1} at point (X, 0,...,Xim-1) €
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Fi. Henceue = 17 ¢ [[1y! X¢% is the value of the'-
th element of the input vector of the polarizing transforiorat
where e/ = Y™ te 215, e € {0,1}, and uf !

cp~ ' A, so that

wt(eg" ™M) <wt(j)

0= Uj;er[r)n—lue/,j es

Any such equation gives rise ta; equations with coefficients
in 2. Observe that there afe; = >°7_, > 5 m, equations,
which involve symbolsu.: : t < wt(e’) < p, wherep =
maxo<;<d—1 wt(j). Hence, the numbef/, >f . Ny of
dynamic frozen symbols; : ¢ < wt(i) < p, is upper bounded
by M. It can be also seen thatly = M.

The equalityNg = 1 = mg holds for any EBCH code
with d > 2. Assume thatV, Zsest ms for all t < tg, so
that My, = M;,. Since My, 1 = My, — Ny < Mygyq =
M, — ZSGStO ms, one obtainsVy, > ZSGStO ms. Assume
that this inequality is strict.

Any codeword of the considered EBCH code can be repre-

sented as a vector of values of polynomial

f@) = 3 T, (")

teQ\S

(13)

in distinct pointsz; € Fam, wherev, € Fom,;, Tr,,(x)

10

®

X
N
Q

-2 Ry

(64,36,12), L=1 —x— <

64,36,12), L=64 —=—

(64,36,12), Box and Match, t=2 ——

Arikan polar (64,36,8), L=1 N

Avrikan polar (64,36,8), L=4 -
Avrikan polar (64,36,8), L=64

(64.30,14), L=1 — *

(64,30,14), L=256 — &

(64,30,14), Box and Match, t=2 — — >

Avrikan polar (64,30,8), L=1

Avrikan polar (64,30,8), L=4 Y \

Avrikan polar (64,30,8), L=256 AR

0 1 2

7z

‘s

10

Ey/No, dB

Fig. 4. Performance of list/stack SC decoding of extendedH BGdes

Unfortunately, experiments show that this is true only foiad

n. Figure 4 illustrates the performance of EBCH codes under
list/stack SC algorithm with list siz& and box-and-match [32]
algorithm with reprocessing order as well as Arikan polar
codes. It can be seen that Arikan polar codes far outperform
extended BCH codes in the case of list sizequal tol (i.e.

S L a2, This polynomial can be represented in multivariateclassical SC decoding). However, higher minimum distance

form as

m—1

mel) = Z Trmt Vt H

teQ\S j=0

>

€o,....em—1€{0,1}

f(X();-"v <Z

=0

1-t;
27
Bi Xl)
m—1

Ugr H Xllfel

=0

(14)

wheret = Y7129 ¢; € {0,1}, so thate; = f(x;)
f(Xi0,...,Xim—1). Observe that the’-th row of matrix A
can be considered as a table of values[§f';' X~ in
various points off'}*. Hence,u., can be considered as input
symbols of the polarizing transformation.

Hence, the set of polynomialg(Xo,...,X,,—1) corre-
sponding to the considered code contaifi, = ("
Zsesto ms
of degreem — t.

results in significant performance gain of EBCH codes under
box-and-match near-ML decoding algorithm. Huge list size

is needed in order to obtain comparable performance under
list/stack SC decoding, while Arikan polar codes achiewe th
near-ML performance already fdr = 4.

V. POLAR SUBCODES

It is possible to show that the minimum distance of polar
codes with Arikan kernel is given b®(y/n) [33]. This results
in quite poor ML decoding performance.

Exact performance analysis of the list/stack SC decoding
algorithm, which is commonly used to implement near-ML
decoding of polar codes, still remains an open problem. It
was empirically observed that in the low-SNR region codes
with lower SC decoding error probability provide lower arro
probability under list SC decoding. However, in the highFSEN

linearly independent polynomials giventoby (14) region the performance of list/stack SC decoding algorithm
Observe also that the forms of degreedepends mainly on code minimum distance. Therefore, we

m — t, of these polynomials are also linearly independentPropose to explicitly construct codes with a given minimum
However, this is not possible since, by assumption, theee ardistance, which would minimize the SC decoding error prob-
N: > Y ,cs, ms constraints on the coefficients of these ability.
forms. The obtained contradiction proves the theorem.m  Definition 1. Consider ag-ary input memoryless output sym-
The particular set of dynamic frozen symbol indicd  metric channelW (y|c) and an(n = ™, k', d) codeC’ overF,,
of the EBCH code depends on the basis being used. Orealled parent code. LeF’ be the set of dynamic frozen symbol
may enumerate different bases Bf~ and select the one indices ofC’ for the case of kerneF;. An (n,k < k/',> d)
which minimizes the SC decoding error probability (7). 3ani  polar subcodeC of code(C’ is defined as the set of vectors
approach was used in [30], [31] to obtain trellis diagrams ofcg‘1 = ug‘lmaFl@"”, whereug‘1 simultaneously satisfies
EBCH codes. the dynamic freezing equatio(®0)for codeC’, and additional
Theorem 2 and the existence of a RM supercode suggest thewnstraintsus = 0 for &’ — k indicess ¢ F’ with the highest
the SC algorithm and its variations may work for EBCH codes.error probabilities P; for a given channel (y|c).
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Encoding of polar subcodes can be performed as corresponding to dynamic frozen symbols of the EBCH code
are underlined. It can be seen that has the highest erasure
c=aWA, (15) probability 0.77 among not yet frozen symbols. Therefore, we

propose to introduce an additional constraint = 0. This is
equivalent to removing the first row from matric@s and G
presented in Example 1.

where z is an information vector}/ is a matrix, such that
WVT =0, andV is the dynamic freezing constraint matrix.
This can be considered as pre-coding the data with some out
code with generator matrid’, and encoding its codeword with Example 4. Consider construction of §1024,512) code.

a polar code. However, we do not explicitly specify an outerrpgre” eyists a(1024,513,116) EBCH code, which cannot
code for this construction. Instead, we require that thaioktl .~ jacoded efﬁcienz[ly v\;ith (list) SC decoaer. On the other
codeworde should belong to the parent code with sufficiently hand, the classical polar code optimized for ANGN channel

high minimum distance. : _ o ;

Polar codes with CRC [2] and LDPC outer codes [8] can\t’gf(g aEfl/(])\;z 8_93255 ng::] g;zr;lﬁ]rtncgéséa}nzc; J\}E(SE) ?On)eccan
be considered as a special case of the proposed Constuction - g/ (3,10 and freezess1 additional bit subchannels to
However, these codes employ ad-hoc constraints (10). Thergpain a(1024, 512, > 28) polar subcode with dynamic frozen
fore, it is difficult to control their minimum distance. __symbols. The specification of the obtained code includes onl

It must be recognized that the SC decoding error probability,” _ 20 non-trivial equations(10) with T = 111 terms, so

P given by (7) of a polar subcode cannot be less than thé,e ¢ost of evaluation of dynamic frozen symbols is negdigib
SC decoding error probability of a classical polar code ef th . mpared to the cost of multiplication by matrik

same length and dimension, constructed for the same channecf

using the same kerné}. Therefore, polar subcodes provide no  Observe that the SC decoding error probabilfy of a
advantage with respect to classical polar codes if SC degodi (n,k,d) polar subcode of any code cannot be less than
is used. However, significant performance gain undertéstls  the SC decoding error probabilit? for a classical(n, k)

SC decoding can be obtained. Experiments show that for givepolar code constructed for the same channel using the sam
values ofn, k,d polar subcodes with loweP provide lower kernel. However, the performance of a polar subcode under
list/stack SC decoding error probability. Hence, one stioul |ist/stack SC decoding with sufficiently large list siZzemay
selectC’ so that its se#” includes as many as possible indicespe substantially better. It was empirically observed that t

Ji corresponding to symbols with high error probabilfty,.  size of the listL needed to obtain such gain increases with
P. Hence, one needs to quantify the valueofP needed
A. Arikan kernel to obtain a given minimum distaneé However, it would be

] easier to characterize the rate of a polar subcode with angive

1) The construction:We propose to employ EBCH codes minimum distance, such that it has the same SC decoding erro
as parent ones in the proposed construction of polar subcodgyropability as a given classical polar code of the same tengt
Theorem 2 implies that the indices of the most of the frozen Let C be a polar code with kemef, of rate 5(), such
symbols of EBCH codes have low weight. Bounds (5)=(6) im- " symbols withZ, ; < z are r21ot frozeﬁ Consider
ply that the Bhattacharyya parameter of ikl bit subchannel st '
C WD) . now an (n,k,d) polar subcodeC of rate p(z,d) = k/n,
is given byZ, ; = O(Z{, ). Hence, employing EBCH codes  i-:nad from a(n = 2.k = B(m,d)n,d) EBCH code
as parent ones in the proposed construction enables one by freezing all symbé:lsw with ’Z S . The set
avoid freezing of bit subchannels with la, ;. This improves % non-frozen symbols of cz)dél canmlge_represented as

n

(d,2) = Ui (A(rm,2)\ Fh, ), where A(r,m, ) =

the performance of the obtained code under SC decoding a
its variations. r)

Observe that increasing minimum distance of the parenti|0 <i < 2™, wt(i) = r, Zam ; < z}, and F; . is the set of
code causes more bit subchannels with [Byy; to be frozen. dynamic frozen symbol indices. of C’, such thatwt(e) = .
In order to keep code dimensidrfixed, one needs to unfreeze | js quite difficult to find|A(r, m, z)| analytically, although
some bits subchannels with hidh, ;. This results in higher it can be computed in polynomial time for any specific binary
SC decoding error probability. This can be compensated to gput output symmetric memoryless channel and valyes
certain extent by employing list SC decoding and its vasi@i  [25]. Therefore, we propose to approximate it by employing a

with larger list size. Unfortunately, there are still no bi@al  asymptotic expression for the fraction of common non-froze
techniques for finding a trade-off between the performance a symbols of a RM code of rat&(m —r,m) = 2™ S (™)

decoding complexity. We have to use simulations in order tg,,q g polar code of length = 2" and ratej;.o leuis
find optimal values of the code minimum distance. value was shown in [34] to converge with — oo to

Example 3. Let us construct a16,6,6) polar subcode of ¢(p,r,m) = Cmin (&, R(m —r,m)), whereC is the capac-
(16,7,6) EBCH code considered in Example 2, by optimizingity of the considered channel. Hence, @™ |A(r,m, z)| ~
it for the case of the binary erasure channel with erasureopro  ¢(p(z),r,m) — ¢(p(z),r + 1,m).

ability Z; o = 0.5. The vector of bit subchannel Bhattacharyya Therefore, one obtains

parameters (i.e. symbol erasure probabilities) equdlg =

(0.999,0.992, 0.985, 0.77,0.96, 0.65,0.53,0.1, 0.9, 0.47, 0.35,

3.7-1072,0.23,1.5-1072,7.8:1073,1.5-10°). Here the values |A(r,m, 2) \ Fg.| > max(0, |A(r,m, z)| — | Fy,[), (16)
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PP causesf to be much less than the val}€, NV; predicted by
Emirc Theorem 2 for the parent code, so that matiixappears to be
1  sparse. This was illustrated in Example 4. Hence, the engodi
complexity of the proposed polar subcodes does not exceec
{1 that of polar codes withf-bit CRC.
Decoding of polar subcodes can be performed using the
41 same algorithms as classical polar codes, which should be
augmented with a subroutine for evaluation of dynamic froze
1 symbols. Hence, the number of operations with probatslitie
or log-likelihood ratios remains the same as in the case of
| classical polar codes. However, the cost of bit maniputetio
increases at least b9(Cyy ). For example, in the case of Tal-
Vardy list decoding algorithm and its derivatives, the eslu
u;, which are needed for evaluation of the dynamic frozen
o5 ‘ ‘ ‘ ‘ ‘ ‘ symbols, are not stored explicitly. One should either idtice
0 20 40 60 80 100 120 1o for each path an additional array of sifewhere the values of
dynamic frozen symbols are accumulated, or recayeirom
intermediate values. In the first case the decoding contglexi
increases byfLn + Cw L bit operations, wherd. is the
list size, since the additional arrays need to be copiedewhil
so that cloning the paths. In the second case the complexity depend:
m on the specific structure of dynamic freezing constraints.
-m TR The sequential decoding algorithm [5] and its block general
plzd) =2 Zmax(o’ (A m, 2) = 1Fa.]) ization [36] were shown to be able to decode polar codes with
m very low average complexity and good performance. These
~ Zmax (0, 6(5(2), 7, m) — (p(2), 7 + 1,m) — N,27™) algorithms can be naturally used in the case of polar sulscode
r=0

04 |-

0.35 [

Code rate

03

0.25 |-

02|

Fig. 5. Rate of polar subcodes of length 1024

r=0

where N, is given by Theorem 2. _ B. Improved polar subcodes with Arikan kernel
Figure 5 illustrates this bound together with the actuad ot . m
(n, k, d) polar subcodes of EBCH codes of length= 1024. Let us consider &n = 2™, k,d) polar subcode constructed

The dimensior of these subcodes was selected so that thefS described in Section V-A. It can be represented as an IGCC
achieve approximately the same successive cancellatimdde With outer codes of lengt®, s < m. It appears that most
ing error probability atZ, /N, = —1 dB as the classical Arikan outer coc_jes o_btamed in t_hls way are classmal_ Arikan p(_)lar
polar code(1024,512, 16) constructed for the same value of €0des with quite low minimum distance and high decoding
E,/Ny. It can be seen that the bound is quite loose. This is bot§TOr Probability. Therefore we propose to employ the appho
due to (16), which assumes that all dynamic frozen symbol§u99ested in [37]. Namely, we impose the requirement orroute
induced by the EBCH code correspond to subchannels witG0des t0 b&2°, k;, d;) EBCH codes (or their subcodes). The
the lowest possible Bhattacharyya parameters, and afiptica Parameterss;, d; are selected in order to minimize the MSD
of an asymptotic expression for approximationf&ir, m, )|.  €or probability, which is given by

It can be seen that the degradation of polar subcode rate ——
with respect to a classical polar code is negligibledasp to pP_1_ H (1—m)
twice the minimum distance of the original polar code. - g

2) Encoding and Decoding Complexitfncoding of the
proposed polar subcodes of binary EBCH codes can be

, - - ) tnder the constraing >, ' k; = k. Herer, denotes the
g?:or:m(;dl”? %St)hZvncrz)scto(r)nfp:gmttgnméagoanézg%,a\t/:ir:g/re decoding error probability of the code utilized at theh

T is the number of terms in the right-hand side of non-level of the IGCC. These probabilities can be estimated, for
trivial equations (10), ang < 3, N, is the number of such example, using the tangential sphere bound [38] togethibr wi

equations. Systematic encoding can be implemented using tl’frienSity evo_lution [25] or Gaussian approximatior_1 [9]. |
approach introduced in [35] with complexity + n log . The obtained IGCC can be also represented via a system o

Theorem 2 implies that the set of dynamic frozen symboffduations (10). The corresponding matvixis given by

=0

indices for a parent EBCH code includes only the ones V!

with sufficiently small weight. Furthermore, one can sed tha Vi 0 0

a dynamic freezing equation for symba} cannot involve 0o v 0
symbolsu; : wt(j) > wt(i). On the other hand, most of V= Lo ;

the constraints;; = 0, imposed on bit subchannels with high : : . :
error probabilityP;, correspond to low-weight integegs This 0 0 ... Vom-s_y
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Fig. 6. Extended BCH kernélsa

where V' is a constraint matrix for a paren™, K >
k,d) EBCH code, andV; are constraint matrices for outer
(2°,k;,d;) codes.

10000000000000000000000000000000 recursively decomposed in the same way. This implies that an
15000000000000000000000000000000 EBCH code has a supercode, which is equivalent to a GCC
i§§ég§§§§§§§§§§§§§§§§§§§§§§§§§§§ with inner and outer extended cyclic codes. This is simitar t
LIBRURAURIRIARIARARMIRRIRIRRIRIR | ich was veed above to show that EBCH codes have no
10010100100000000000000000000000 whic Yyas use aOV_e 0 show a . . CO. es have no
10001010010000000000000000000000 so bad” set of dynamic frozen symbol indices in the case of
10000101001000000000000000000000 . P .
Lasgioliniienneanenneaneaneaned | Arkan polarizing transformation
RERNERTERRERRR R iR AR R T D e Tt o L€t

! !/ H H
[ognotogtotteiegeaganeagaganed | O DN E,d) BB Sode U B I

m— . .
10111101011111000100000000000000 Ty = Zj:() Bt;vj» where(yo, ..., vm—1) is a basis offzum
10011110101111100010000000000000 . m—1 ;
1R0atiioledliiibReiaReaReaRea | considered as avector space o, £ = Sy 1120 <
11010101101100100011010000000000 t; < 2, andg; is thei-th element off',.. The above described
i§§§§§§%i%i?@ég%éi?§§§§§§§§§§ construction of EBCH kernel corresponds to the cage~
_ 17— . H HR

LORRRRRIRLON AR BOLRORI RIBRRERE | T fhenone can consiruct polar subcodelbtismg the
13E190300010101111011010011000090 ofIFg;f..Thenonecan_constructpolgrrnsubcode(,’bﬁsmgthe
10011100100010101111011010011000 polar|z|ngtransformaﬂoszlmFl
10001110010001010111101101001100 . ’ .
10000111001000101011110110100110 The proposed construction requires one to be able to
11111111111111111111111111111111

compute symbol error probabilitie®;. To the best of our

knowledge, there are still no analytical techniques fovisgl

this problem, except for the case of the binary erasure adann

[42]. Therefore, we use simulations to obtain these values.
The obtained polar subcode can be considered as an instanc

of the IGCC introduced in Section Ill. Indeed, let us consie

subsetF, = {j; € F| |ji/l] = s} of the set of dynamic frozen

The codes obtained in this way are supposed to be decodsgmbol indices corresponding to tkeh block,0 < s < I™~1,
by the block sequential decoding algorithm [36] with block and letV(*) be the correspondingF,| x I™ submatrix ofV.
size at least®. This algorithm employs the fast tree-trellis It can be assumed without loss of generality th&t) has

list Viterbi algorithm [39] for decoding of outer codes ofeth

an identity submatrix in columns with indices jA;, so that

IGCC. However, more efficient decoding techniques can bd (¥) = (A,| (X,|I)11, |0), wherell, is al x [ permutation
N—_——

designed for specific outer codes.

| Fs|x1

The proposed approach can be considered as a generm—atrix andA
ization of the construction suggested in [40]. The Mondelli 5 .
Hassani-Urbanke codes can be considered as GCC with inner
Arikan codes and outer RM or polar codes. Since EBCH
codes provide higher minimum distance, one may expect the

s, L5 are some matrices. Therefore, one obtains
system of equations

sim -1

gm—1
sim—1 U

0

(S DIL,) ™ AT

improved polar subcodes to provide better performance.

C. Polar subcodes with EBCH kernel

For I = 2*# an extended BCH kernel can be obtained a

matrix F;, where ((£7)i+1,1,---,(Fl)i+1,1—1) iS a vector of
coefficients oft’ g; (x), whereg, (z) is a generator polynomial
ofa(l—1,1—1—4) BCH code, and;j is the smallest non-
negative integer, such that= j + ’. Furthermore, one has
(.Fl)()y() =1and (ﬂ)iJrl,() = Zi_:ll (E)i+17j- Figure 6 presents
an example of the EBCH kernel.

Let C(g,s,m,J) be a code overF, of length ¢°™,
which consists of evaluation vectors ofm-variate
polynomials WA@"O’ eeyTm—1), such that all
their coefficients A;, . ;. ., are equal to zero for
(jos---»Jm—1) € J, in various points(xo, ..., Tm—1) € Fyt.
Let L(h) {Go, -+ m—1)10 < i < ¢%, >, ji > h},
and L*(h) {j = S i Gos - - Gmet) € L(h)}.

It was shown in [41] that code<’(q,s,m,L(h)) and

Its solution is given by

Sl’m71

ST _ v(I)Xs)s + ug

slm—1

AT (0|11,
where v is an arbitrary vector in]Fl{'fs‘. Hence, instead
of successive decoding of symbolg;m-1,..., ugm-14; 1
according to (11), one can recover them jointly by decoding
in a cosetx; + C,, whereC, is a code generated by matrix
(IS )ILF, andz, = ug™ ~'AT(0|I)II,F, as shown in
Figure 2. This enables one to improve the performance and/or
reduce the decoding complexity.

D. Reed-Solomon kernel

The results of [41] allow us to extend the proposed construc-
tion of polar subcodes of EBCH codes to the case of Reed-
Solomon (RS) kernel ovéf,. The RS kernel is given by matrix
F, where(Fy); ; = Bé.‘l"‘, andg; are some distinct elements
of Fy,i < ¢. It was shown in [23] that foi < ¢ the Reed-

C(q,sm,1,L*(h)) are equivalent. That is, these codes canSolomon kernel provides the highest possible polarizatibe
be considered as GCC with inner and outer extended cyclielowever, polar codes with RS kernel still suffer from low
codes. Furthermore, outer codes in this construction can bminimum distance.
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e-BCH subcode (1024,512,28), BS(3) —%— O e O e-BCH subcode (1024,512,28), BS(3) —%—
e-BCH subcode (1024,512,28), BS(5) —&— — e-BCH subcode (1024,512,28), BS(5) —&—
Improved e-BCH subcode (1024,512,28), BS(5) — = t “\ >~ Improved e-BCH subcode (1024,512,28), BS(5) — =
Arikan (1024,512,16), TV o Arikan-CRC (1024,512,?)
. Arikan-CRC (1024,512,?), TV ‘\ - WIMAX LDPC (1032,516,?), 200 iterations —o—
T~ Arikan-CRC (1024,512,?), BS(3) i 101 5 e
WiMAX LDPC (1032,516,?), 40 iterations - —
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N N h°)
\ \
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L)
102 102 N \“
o < o -
I TN I <
N
102 Y \ 10 N N
L}
%
W, A
< N
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10% 10 > >
X by o4
h N
N
108 = 108 N
0.5 1 15 2 25 0.5 1 15 2 25
Ey/No, dB Ey/No, dB
(@) L =32 (b) L = 256

Fig. 7. Performance of polar subcodes with Arikan kerneleofgth 1024

In order to obtain a code with better performance, onepolarizing transformationd = By o F/2*:
can setl = ¢ and represent arfn = ¢™,k’,d) EBCH

code of lengthg™ over F,, such that itst-th locator is 000 02 0010082001000
T = Z?:Ol Bt,7, where(yo,...,Ym-1) is a basis offym 8 8 8 60 8 8 (1) 8 (1) (1) 8 8 8 8 8 8
considered as a vector space ofgr ¢ = > 1 t;¢7,0 < V=10000100000000000
t; < ¢™, via a system of equations (103, and introduce 001 0000000000000
additionally k" — k static freezing constraints; = 0 for non- 0100000000000000
frozen subchannelﬁV,(f) with the highest error probability. 1000 000000000000

Again, simulations have to be used for performance evalnati o ) )

of bit subchannels. The obtained codes can be decoded usifgthe case of transmission of a binary image of the output of

the techniques presented in [6], [43]. the polarizing transformatiomd over the AWGN channel with
E;/No = —1 dB, the symbol error probabilities were found

Example 5. Consider construction of &16,8,6) polar sub-  to be(0.74,0.7,0.55,0.27,0.58,0.33,0.12,0.02,0.23,0.04,4 -

code overF,. The4 x 4 Reed-Solomon kernel is given by ~ 1073,2 - 107%,0.03,4 - 1074,3 - 1075, < 107%). Hence, we
propose to set additionally; = 0.

8 i 6—1#1 é VI. NUMERIC RESULTS
Fy = 0 1 B B+1]| In this section we present simulation results illustrating
1 1 1 1 the performance of proposed polar subcodes of EBCH codes

in the case of AWGN channel and BPSK modulation. For
comparison, we present also the results for the case oicdss
where is a primitive element of ;. The check matrix of the polar codes with the corresponding kernels, polar codels wit
(16,9,6) parent EBCH code is Arikan kernel and CRC-16 (Arikan-CRC) [2], LTE turbo code,
as well as LDPC codes specified in WIMAX and CCSDS
standards. For polar subcodes with Arikan kernel we have use

11711 111111111111 the block sequential (BS(s)) [36] decoding algorithwhere
018pB20 18801 BB20 1 33 2¢ is the length of outer codes in the IGCC representation
000011118 B3 B B B2p2p3232 of the corresponding polar subcod_e. For p(_)lar codes with the

H=|01828 3821010 BpB28253 0 1 BCH kgrnel, the sequential decodllng algorlthm [7] was used,
00001 1118282888888 which is based on the order-statistics soft-input hargpout -
011131088 B1080H1 decoding of the component codes. Both probability-domain
000 0p*B*B B BB BB AE B A

1For s < 3 the block sequential decoding algorithm provides slightly
inferior performance compared to the probability-domaiplementation of
the Tal-Vardy list decoding algorithm with the same listesiz, but requires

This corresponds to the following constraint matrix for the much smaller number of arithmetic operations.
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107 T e subebde (1024 512 28) B850 13 L in_stead of s. However, increasing enables one to use
o= S oa O EEN boode (1024 512.28), BS(S). L-296 —e— the improved construction of polar subcodes. We also believ
e dmprovedeBCrsubeott EORKE (Hosi o1 %), Ba) -0 that the block sequential decoding algorithm can be further

" ~3> _  WIMAXLDPC (1032,516,?), 40 iterations - -6— . s . e . .
;. . <2 WIMAX LDPC (1032,516,%), 200 feratons - +— simplified by employing more efficient decoding algorithms

g o T R for outer EBCH codes.

§ \ - Figure 9 presents the performance of codes of leagus.

2 - B It can be seen that the proposed improved polar subcode:

© = ~ —— . . . .

g1° Trsm o with Arikan kernel provide substantially better performan

€ | i

2 compared to the case of LDPC and turbo codes. Observe tha

g o G increasing minimum distance of the polar subcode results in

< s i better performance in the high SNR region. For comparison,

* ¢ we provide also the results for the MHU construction, repro-

duced from [40]. As it may be expected, the improved polar
subcode, which employs EBCH outer codes, provides better

0° v ; v . ., performance than the MHU code, which employs outer RM

Ey/No, 0B and Arikan polar codes. For comparison, we report also tesul

for the case of a GCC with outer EBCH codes of leng#h

which was obtained as described in [37], and decoded with the
block sequential algorithm. It appears that some of theroute
codes of the IGCC corresponding to the improved polar sub-

implementation of the Tal-Vardy list decoding algorithm\(T ~ code, which correspond to good bit subchannels, have highet
and the block sequential decoding algorithm were used fofate, while those corresponding to bad bit subchannels have
decoding of polar codes with Arikan kernel an CRC. Observdower rate than in the case of the classical GCC optimized for
that in the case of polar codes with CRC the block sequenth® same SNR. This causes the performance of the improvec
tial decoding algorithm provides slightly worse perforraan Polar subcode to be better than that of the classical GCC.
compared to the original Tal-Vardy algorithm, but has much_ Figure 10(a) presents the performance of codes with the
lower complexity. Belief propagation algorithm with floogi ~EBCH kernelFs,. It can be seen that these codes outperform
schedule was used for decoding of LDPC codes. those with Arikan kernel. For the_ case of polar ;ubcodes_n eve
Figure 7 illustrates the performance of cotles length ~ Petter performance can be obtained by increasing the #ist si
~ 1024. It can be seen that polar subcodes of EBCH coded at the cost of higher decoding complexity. Figure 10(b)
provide significant performance gain with respect to the-cla Presents the performance of the binary image of polar codes
sical polar codes of the same code length and dimensior@nd polar subcodes withx 4 Reed-Solomon kernel ovéfh:.
Furthermore, they outperform polar codes with Arikan kérne It can be seen that classical polar codes with Reed-Solomor
and CRC. Observe that increasingn the case of the block kernel have quite low minimum distance, similarly to theecas
sequential decoding algorithm, i.e. employing in the decad  ©f Arikan kernel, but still provide better performance caamgxd
representation of a polar subcode as an IGCC with longer outd® @ polar code with Arikan kernel with comparable param-
codes, results in better performance. The best performan&iers. In both cases employing the proposed construction of
is achieved by improved polar subcodes, where outer EBCHolar subcodes of EBCH codes results in improved minimum
codes of length32 were selected so that the MSD error distance and even better performance compared to the code

Fig. 8. Decoding complexity for polar subcodes with Arikagrriel

probability of the corresponding IGCC is minimized. presented in Figures 7(a) and 9(b).
Figure 8 illustrates the average number of summation op-
erations performed by the block sequential and belief prop- VII. CONCLUSIONS

agation decoding algorithms for the case of polar subcodes
and LDPC codes, respectively. Observe that decoding polabr
subcodes requires slightly lower average number of oerati
compared to polar codes with CRC, since the dynamic freezin
constraints prevent the sequential decoder from consiguct
wrong paths up to the final phase of decoding.

It can be also seen that fer= 3 decoding of polar codes
requires 10 times less operations compared to LDPC codes. F
s = 5 the complexity becomes comparable. Furthermore, th
average number of operations for the casd.of 256,s = 3
is less than in the case d&f = 32, s = 5. From these results
one may conclude that it is more advantageous to increa

In this paper the construction of polar subcodes of linear
lock codes was introduced, which is based on the concept of
ynamic frozen symbols. It enables one to obtain codes with
igher minimum distance than classical polar codes, which
can still be efficiently decoded using the derivatives of like
successive cancellation algorithm. Although we do not have
proof that the proposed codes achieve the channel capacity
ey were shown to outperform some of the existing LDPC and
urbo codes of moderate lengths. Many existing constrastio
based on polar codes, such as polar codes with CRC, can b
ngnsidered as a special case of the proposed polar subcodes
Unfortunately, due to lack of analytical techniques for-pre
2In order to ensure reproducibility of the results, we haveugea web site dICtlng .the performance of “SUStf’iCk .SC decoding alganih
http://den.icc.spbstu.ru/index.php?id=polar contagnihe specifications of the ~heuristical methods were used in this paper to construct the
considered polar subcodes with Arikan kernel. codes. Any progress in the performance analysis of these
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algorithms may lead to design of better codes. Another way to The authors thank the anonymous reviewers and the Gues
improve the performance of the proposed codes is to usedong&ditor for their helpful comments, which have greatly im-
outer EBCH codes. This, however, requires development gbroved the quality of the paper.
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