
Improved hybrid algorithm for finding roots of
error-locator polynomials

SERGEI FEDORENKO , PETER TRIFONOV,
St. Petersburg State Polytechnical University, Russia,sfedorenko@ieee.org, petert@dcn.nord.nw.ru

ELENA COSTA, HARALD HAAS
Siemens AG,Elena.Costa@icn.siemens.de, Harald-1.Haas@icn.siemens.de

October 23, 2002

Abstract. In this paper we suggest a hybrid method for finding toots of error locator polynomials. We first review
a fast version of the Chien search algorithm based on the decomposition of the error locator polynomial into a sum
of multiples of affine polynomials. We then propose to combine it with modified analytical methods for solution of
polynomials of small degree in radicals.

We suggest, in particular, two efficient decompositions, whose combination with analytical algorithms yields a sig-
nificant reduction in time-complexity, as proved by means of simulation.

Keywords: Chien search, error locator polynomial,p-polynomial, linearized polynomial, affine polynomial, BCH
code, Reed-Solomon code

1 INTRODUCTION

It is well known that one of the most time-consuming stages of decoding process of Reed-Solomon, BCH and some
other error-correcting codes is finding roots of the error-locator polynomial. Root finding problem can be formally stated

as finding all distinctxi : F (xi) = 0, F (x) =
t∑

j=0

fjx
j , xi, fj ∈ GF (2m). Many algorithms [1, 2, 3] for its solution were

suggested, but for practical parameter values (currently most standards define Reed-Solomon codes witht ≤ 16, m = 8)
the most frequently used algorithm is the Chien search [7]. It is simple substitution of all elements ofGF (2m) into the
polynomial, it has very high time complexity.

Recently a modification of the Chien search algorithm based on a special polynomial evaluation rule has been sug-
gested [5]. It is based on the decomposition of the error-locator polynomial into a sum of multiples of affine polynomials.
In [5] it is also stated that the algorithm can be further improved by constructing different polynomial decompositions.

In this paper we propose two improved polynomial decompositions which may reduce implementation complexity of
the root-finding algorithm for some error-correcting codes. We suggest a combination of the Chien search algorithm with
a modification of analytical method.

The remainder of the paper is organised as follows. In section 2 we provide some basic definitions and describe
the main idea behind the affine decomposition of polynomials. Later we present two special affine decompositions for
polynomials frequently appearing in decoders of some popular error-correcting codes. In section 3 we describe some
analytical techniques for finding roots of small-degree polynomials. Section 4 presents simulation results.

Submission 1



S. Fedorenko, P. Trifonov, E. Costa, H. Haas

2 IMPROVED CHIEN SEARCH ALGORITHM

2.1 BASIC DEFINITIONS

In this section we introduce some basic definitions and describe the main idea of the affine decomposition as suggested
in [5].

Definition 1. A polynomialL(y) overGF (2m) is called ap-polynomial forp = 2 if

L(y) =
∑

i

Liy
2i

, Li ∈ GF (2m).

These polynomials are also called linearized polynomials. The following lemma describes the main property ofp-
polynomials [1].

Lemma 1. Lety ∈ GF (2m) and letα0, ..., αm−1 be a standard basis. If

y =
m−1∑

k=0

ykαk, yk ∈ GF (2)

andL(y) =
∑

j

Ljy
2j

, then

L(y) =
m−1∑

k=0

ykL(αk).

Definition 2. A polynomialA(y) overGF (2m) is called an affine polynomial if

A(y) = L(y) + β, β ∈ GF (2m),

whereL(y) is ap-polynomial.

The above lemma makes possible evaluation of affine polynomialsA(x) with just one addition at eachxi ∈ GF (2m)
if all xi are ordered in their vector representation as Gray code.

Definition 3. Gray code is an ordering of all binary vectors of lengthm such that only one bit changes from one entry to
the next.

So if xi ∈ GF (2m) are ordered as a Gray code (i.e.wt(xi − xi−1) = 1, wherewt(a) is the Hamming weight ofa)
the following holds:

A(xi) = A(xi−1) + L(∆i), ∆i = xi − xi−1 = αδ(xi,xi−1), (1)

whereδ(xi, xi−1) indicates position in whichxi differs fromxi−1 in its vector representation. Ifx0 = 0 thenA(x0) = β
and the above equation describes the algorithm for evaluation ofA(x) at all points ofGF (2m).

Example 1. Let us consider the case ofGF (23) defined by the primitive polynomialπ(α) = α3 + α + 1. One of many
possible Gray codes is the sequence 000, 001, 011, 010, 110, 111, 101, 100 or0, 1, α3, α, α4, α5, α6, α2. So one needs to
prepare a table of valuesL(α0), L(α1), L(α2). ThenA(1) = A(0) + L(α0), A(α3) = A(1) + L(α1) and so on.

This algorithm can be applied for evaluation of any polynomial if it is decomposed into a sum of affine multiples.

As stated in [5], every polynomialF (x) =
t∑

i=0

fix
i can be decomposed into a sum of multiples of affine polynomials:

F (x) = f3x
3 +

d(t−4)/5e∑

i=0

x5i(f5i +
3∑

j=0

f5i+2j x2j

), (2)

wheredae is the smallest integer greater than or equal toa. Applying the polynomial evaluation algorithm described
above to affine polynomials in (2) and using Horner’s rule [8] for evaluation of the sum one can evaluate the polynomial
at all non-zero points of the finite fieldGF (2m) with time complexity equal to

Wfast = m

⌈
t + 1

5

⌉
(4Cmul + 3Cadd) + (

⌈
t + 1

5

⌉
(2Cadd + Cmul) + 2Cexp)(2m − 1), (3)

whereCexp, Cmul, Cadd denote the time complexity of one exponentiation, multiplication and addition over the finite
field.

2 ETT



Improved hybrid algorithm for finding roots of error-locator polynomials

2.2 SOME SPECIAL DECOMPOSITIONS

In this section we suggest decompositions of polynomials which can be used in decoders of Reed-Solomon
(255, 239, 17) and(255, 223, 33) codes.

Example 2. A polynomial of degree not higher than 8 can be decomposed as

F (x) =
∑8

i=0 fix
i = A1(x) + x3(A2(x) + f6x

3), (4)

A1(x) = f0 + L1(x) = f0 + f1x + f2x
2 + f4x

4 + f8x
8,

A2(x) = f3 + L2(x) = f3 + f5x
2 + f7x

4.

The idea behind this example is to eliminate one exponentiation operation by moving the reminder term into an affine
polynomial. The time complexity of evaluation of a polynomial at all points ofGF (2m) using this decomposition equals
to

C8 = m(6Cmul + 4Cadd) + (4Cadd + 2Cmul + Cexp) (2m − 1). (5)

Comparing this expression with (3) one can see that this decomposition reduces initialization cost and eliminates one
exponentiation operation.

Example 3. The above example can be generalized to the case of polynomials of degree 17 as follows:

F (x) = A′1(x) + x3(A2(x) + x3(f6 + x3(A3(x) + x3(A4(x) + f15x
3))), (6)

A3(x) = f9 + f10x + f11x
2 + f13x

4 + f17x
8,

A4(x) = f12 + f14x
2,

whereA′1(x) = A1(x) + f16x
16. The time complexity of evaluation of a polynomial at all points ofGF (2m) using this

decomposition equals to

C17 = m(12Cmul + 8Cadd) + (9Cadd + 5Cmul + Cexp) (2m − 1). (7)

One can see that this decomposition also reduces initialization cost with respect to (3) by eliminating one exponenti-
ation operation, but it introduces one more addition and multiplication. Hence, one has to consider implementation costs
of multiplication and exponentiation operations.

2.3 COMBINING CHIEN SEARCH WITH OTHER METHODS

There exist already a lot of methods [2, 3, 4] for finding roots of polynomials of small degrees with very low com-
plexity. Therefore, the combination of the Chien search with one of these techniques seems to have significantly lower
complexity compared to the full Chien search. This can be easily implemented by division if the original error locator
polynomialF (x) by a factor(x−xi), after the rootxi has been discovered. Special low-degree algorithm can be invoked
immediately when degree of the polynomial becomes sufficiently small.

In this section we investigate statistical behaviour of the Chien search. Let us suppose that the Chien search is applied
to a polynomialF (x) havingt roots in the setX = {xi ∈ GF (2m)\0|i = 1..n}, n = 2m − 1. The probability that the
k-th element ofX will be thed-th root found by using the Chien search is equal to

p{F (xk) = 0d} =

(
k
d

)(
n−k
t−d

)
(
n
t

) d

k
.

This is the probability that the firstk values chosen fromX containd roots ofF (x) and the last one also is a root.
So the average time complexity of findingd roots is

W =
n∑

k=1

C(t)k p{F (xk) = 0d} = C(t)
d(
n
t

)
n∑

k=1

(
k

d

)(
n− k

t− d

)
,

whereC(t) is the time complexity of one evaluation of the polynomial of degreet using some algorithm. Using well-
known identity

Submission 3



S. Fedorenko, P. Trifonov, E. Costa, H. Haas

r∑

k=0

(
r − k

m

)(
s + k

n

)
=

(
r + s + 1
m + n + 1

)

we obtain

W = C(t)d
n + 1
t + 1

. (8)

One can see that for polynomials with initially smallt (that is the case of a good underlying channel) the application
of a hybrid method can dramatically reduce the overall complexity.

3 ANALYTICAL METHODS FOR FINDING ROOTS OF POLYNOMIALS OF DEGREE t ≤ 4

In this section we describe some algorithms which can be used for finding roots of small-degree polynomials. The
ideas behind these algorithms are widely known [1, 4, 6]. We present here some improvements.

3.1 POLYNOMIALS OF DEGREE 2

Since all polynomials of degree 2 are affine, one can find their roots solving the corresponding system of linear
algebraic equations. However, for polynomialsP (x) = x2 +x+a it is possible to compute all roots using just one matrix
multiplication [6]. EquationP (x) = 0 can be represented in vector form asx̂L = â, wherex̂ = (x0, x1, ..., xm−1),
â = (a0, a1, ..., am−1) and

L =




L(α0)
L(α)
· · ·

L(αm−1)


 ,

with L(y) = y2 + y. Sincey2 + y = 0 only if y = 0 or y = 1, the rank ofL is m− 1. Thus, there is am×m matrixM
such that

LM =




0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0

· · ·
0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0




(in some fields the right side of this expression can differ from this by a permutation). Then solutions of the original
equation (if they exist) can be represented asx̂ = (c, d0, d1, ..., dm−2), whered = âM = (d0, d1, ..., dm−1), c ∈ {0, 1}.
Solutions exist if and only ifdm−1 = 0. Since matrixM can be computed for any field at design time finding roots of
a polynomial can be performed using very simple logical scheme. Moreover, since there exist many values ofM it is
possible to choose one minimizing the implementation complexity of the scheme.

3.2 POLYNOMIALS OF DEGREE 3

Roots of any polynomialP (x) = x3 + ax2 + bx + c can be expressed using Lagrange resolvents [4]

r0 = x0 + x1 + x2 = a

r1 = x0 + wx1 + w2x2

r2 = x0 + w2x1 + wx2,

wherew3 = 1. Roots can be found by Inverse Fourier Transform of the resolvent vector:

x0 = r0 + r1 + r2

x1 = r0 + w2r1 + wr2

x2 = r0 + wr1 + w2r2.

4 ETT



Improved hybrid algorithm for finding roots of error-locator polynomials

It is possible to show [6] that Lagrange resolvents satisfyg(Ri) = 0, whereg(x) = x2 + (ab + c)x + (a2 + b)3,
Ri = r3

i , i = 1, 2. Roots of this equation can be found using the algorithm described in section 3.1. However, since in
some fields cubic root operation may be ambiguous it may be necessary to correct computed values ofri using the Viete
theorem [4].

However, computations can be simplified if the cubic polynomialP (x) is multiplied by(x + a) obtaining the polyno-
mial of degree 4̂P (x) = x4 + qx2 + px + r. This introduces additional root which should be removed from the output
of the degree-4 solver.

3.3 POLYNOMIALS OF DEGREE 4

Rootsx1, ..., x4 of a polynomialP (x) = x4 + ax3 + bx2 + cx + d can be found using values

θ1 = (x1 + x2)(x3 + x4)
θ2 = (x1 + x3)(x2 + x4)
θ3 = (x1 + x4)(x2 + x3),

which are roots ofq(x) = x3 +(ac+ b2)x+(abc+a2d+ c2) = 0 [4, 6]. Thenξ1, ξ2 are roots ofξ2 +aξ + θ1, andη1, η2

are roots ofη2 + (θ1 + b)η + d. Then roots of the original polynomial are roots ofx2 + ξ1x + η1 andx2 + ξ2x + η2.
If a 6= 0 computations can be simplified by substitutionx = 1

y +
√

c
a (if a = 0 transformation is not required). Then

the original polynomial transforms tog(y) = y4 + E1y
2 + E2y + E3, where

E1 =
√

ac + b

d + bc
a + c2

a2

, E2 =
a

d + bc
a + c2

a2

, E3 =
1

d + bc
a + c2

a2

.

Thenθ1 = r0 + r1 + r2, whereri are Lagrange resolvents of equationx3 + E2
1x + E2

2 = 0. r0 = 0, andR1,2 = r3
1,2 are

roots of

r2 + E2
2r + E6

1 = 0.

Thenr3
i = E2

2pi, pi can be found using the algorithm for finding roots ofp2 + p + p0 = 0, where

p0 =
E6

1

E4
2

=
(
√

ac + b)6

a4(d + bc
a + c2

a2 )2
= E2

2

(√
c/a + b/a

)6

.

Since for some fieldsr1,2 values can be not unique it may be necessary to take cubic root of only one value (e.g.r1) and

compute another asr2 = E2
1

r′1
. It can be seen thatξ = ξ1 = ξ2 =

√
θ1. Thus roots of the transformed polynomial are equal

to roots ofy2 + ξy + η1 = 0 andy2 + ξy + η2 = 0, whereηi are roots ofη2 + (θ1 + E1)η + E3 = 0.

4 SIMULATION RESULTS

To demonstrate the efficiency of the proposed solution, the hybrid algorithm has been implemented in C++ program-
ming language and simulations have been performed. The multiplication of field elements inGF (28) was implemented
using tables of logarithms and antilogarithms. The computation times required to evaluate the polynomials at the field
elementsα0, . . . , α254 were averaged over 100000 computations and shown in Table 1.

One can see that algorithms based on decomposition are significantly faster than the Chien search. Moreover, elimi-
nation of some computationally expensive operations dramatically reduces the overall complexity. And, as follows from
(8), combination with analytical algorithms reduces the complexity even more.

5 CONCLUSIONS

In this paper we suggested improvements to some existing techniques which can significantly speedup one of the most
time-consuming stages of the decoding process of Reed-Solomon, BCH and many other codes. Hybrid approach used in
the paper has good potential and can lead to further algorithmic improvements.

Submission 5



S. Fedorenko, P. Trifonov, E. Costa, H. Haas

Table 1: Computation time in microseconds for finding roots of polynomials

Degree Chien search General affine
decomposition
(2)

Special de-
composition
(4)

Hybrid method
based on (4)

Special de-
composition
(6)

Hybrid method
based on (6)

5 14.6 13.4 10.0 2.3 — —
6 17.2 14.8 10.1 3.6 — —
7 19.6 14.9 10.8 4.9 — —
8 22.2 15.1 10.8 5.8 11.4 6.7
9 24.9 15.4 — — 15.5 9.5
10 27.3 16.9 — — 16.4 11.0
11 29.8 18.0 — — 16.4 11.6
12 32.3 18.1 — — 16.4 12.2
13 34.8 18.2 — — 16.9 13.5
14 37.3 18.2 — — 17.4 14.2
15 39.8 20.1 — — 17.4 14.8
16 42.3 21.3 — — 17.9 15.8
17 44.9 21.3 — — 17.9 16.2

REFERENCES

[1] E.R. Berlekamp.Algebraic coding theory. New York: McGraw-Hill, 1968.

[2] C.-L. Chen. Formulas for the solutions of quadratic equations overGF (2m). IEEE Transactions on Information Theory,
28(5):792–794, 1982.

[3] R.T. Chien, B.D. Cunningham, and I.B. Oldham. Hybrid methods for finding roots of a polynomial with application to BCH
decoding.IEEE Transactions on Information Theory, 15(2):329–335, 1969.

[4] B.L. Van der Waerden.Algebra, volume 1. Springer-Verlag, 1991.

[5] S.V. Fedorenko and P.V. Trifonov. Finding roots of polynomials over finite fields.Accepted for publication in IEEE Transactions
on Communications, 2002.

[6] C.J. Williamson. Apparatus and method for error correction. U.S. Patent 5,905,740, May 1999.

[7] R.T. Chien. Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes.IEEE Transactions on Information Theory,
10(4):357–363, 1964.

[8] D.E. Knuth. The art of computer programming, volume 2. Addison-Wesley, 1998.

6 ETT


