Polar codes: from theory to practice

Performance of codes with dimension 1024
Average decoding complexity of codes with dimension 1024
Signal-to-noise ratio required for achieving codeword error probability 1E-2

Polar codes

Channel polarization phenomenon was discovered by E. Arikan in 2008. Essentially, by employing very simple operations one can transform a data transmission channel into a number almost noiseless and almost pure-noise synthetic subchannels. Then one can transmit the payload data over almost  noiseless subchannels with very high reliability. Some deterministic symbols (normally, 0) should be trasmitted over almost pure-noise synthetic suchannels.  

This approach defines a forward error correction method (polar coding). E. Arikan has shown that polar codes achieve Shannon capacity of a wide class of communication channels, having very simple construction, encoding and decoding algorithms. This is the first result of such kind since  1948, when C. Shannon shown the theoretical possibility of creation of such coding methods.  Although code constructions achieving the capacity  of some channels have been previously known, they did not find practical applications due to high implementation complexity. Owing to their simplicity, polar codes have great potential for finding their way into communication and storage systems.

However, it appears that the performance of Arikan polar codes with practically important parameters is substantially inferior compared to similar  LDPC and turbo codes. Furthermore, the complexity and latency of classical decoding methods for polar codes significantly exceeds that of  LDPC codes. Since 2011, Coding Theory Lab of SPbPU is working on overcoming these problems and development of code constructions and decoding algorithms with better performance and lower complexity compared to the existing techniques.

Polar subcodes (Polar codes with dynamic frozen symbols)

P. V. Trifonov and V. D. Miloslavskaya have suggested a generalization of the polar code construction. Instead of transmitting 0 over some synthetic bit subchannels, as in the classical Arikan construction, it was suggested to transmit some weighted sum of the symbols transmitted over the other subchannels (dynamic frozen symbols). The particular weighting coefficients are selected in such way, so that the obtained code is a subcode of an extended BCH code. This enables one to obtain codes with substantially higher minimum distance compared to classical polar codes. The codes constructed in this way provide much better performance compared to known  LDPC and turbo codes.

V.D. Miloslavskaya has suggested a method for shortening polar (sub)codes, which enables one to obtain codes of arbitrary length, which is not possible in the framework of the classical Arikan construction.

This page presents a database of  some polar subcodes. These codes can be decoded using the same techniques as Arikan polar codes.

Sequential decoding of polar codes

V.D. Miloslavskaya and P. V. Trifonov have suggested a sequential decoding algorithm for polar codes. As opposed to the list decoding algorithms suggested by some researchers, the proposed approach avoids a large fraction of useless computation.  As a result, the decoding complexity appears to be less, and the performance is better compared to the case of LDPC and turbo codes with similar parameters. This approach can be extended to the case of polar codes with arbitrary kernel, as well as short Reed-Solomon codes. Further complexity reduction techniques for this approach were developed by G. Trofimiuk and N. Iakuba.

 

 

References

References
20.
P. Trifonov
Star polar subcodes
Proceedings of IEEE Wireless Communications and Networking Conference Workshops
2017
19.
P. Trifonov and G. Trofimiuk
A Randomized Construction of Polar Subcodes
Proceedings of IEEE International Symposium on Information Theory
2017
accepted
18.
P. Trifonov
Chained polar subcodes
Proceedings of 11th International ITG Conference on Systems, Communications and Coding
2017
accepted
17.
Peter Trifonov, Vera Miloslavskaya, Chen Chen and Yuangang Wang
Fast Encoding of Polar Codes with Reed-Solomon Kernel
IEEE Transactions on Communications, 64(7):2746-2753
July 2016
16.
P. Trifonov and V. Miloslavskaya
Polar subcodes
IEEE Journal on Selected Areas in Communications, 34(2):254-266
February 2016
15.
K. Ivanov and P. Trifonov
Hybrid Decoding of Interlinked Generalized Concatenated Codes
Proceedings of 9th International Symposium on Turbo Codes and Iterative Information Processing
2016
14.
Ruslan Morozov and Peter Trifonov
Directed Search Decoding of Polar Codes with Reed-Solomon kernel
Proceedings of XV International Symposium "Problems of Redundancy in Information and Control Systems"
2016
accepted
13.
Vera Miloslavskaya
Shortened Polar Codes
IEEE Transactions on Information Theory, 61(9):4852-4865
September 2015
ISSN: 0018-9448
12.
G. Trofimiuk and P. Trifonov
Block Sequential Decoding of Polar Codes
Proceedings of International Symposium on Wireless Communication Systems
2015
11.
P. Trifonov
Design of Polar Codes for Rayleigh Fading Channel
Proceedings of The International Symposium on Wireless Communication Systems
2015
10.
N. Iakuba and P. Trifonov
Multilevel Buckets for Sequential Decoding of Polar Codes
Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications
2015
9.
Vera Miloslavskaya and Peter Trifonov
Sequential Decoding of Polar Codes
IEEE Communications Letters, 18(7):1127 - 1130
July 2014
8.
P. Trifonov
Successive Cancellation Decoding of Reed–Solomon Codes
Problems of Information Transmission, 50(4)
2014
7.
P. Trifonov
Binary Successive Cancellation Decoding of Polar Codes with Reed-Solomon Kernel
Proceedings of IEEE International Symposium on Information Theory , page 2972 - 2976.
2014
6.
V. Miloslavskaya and P. Trifonov
Sequential Decoding of Polar Codes with Arbitrary Binary Kernel
Proceedings of IEEE Information Theory Workshop , page 376 - 380.
2014
5.
V. Miloslavskaya and P. Trifonov
Sequential Decoding of Reed-Solomon Codes
Proceedings of International Symposium on Information Theory and its Applications , page 466-470.
2014
4.
P. Trifonov
Successive Cancellation Permutation Decoding of Reed-Solomon Codes
Proceedings of IEEE Information Theory Workshop , page 386 - 390.
2014
3.
P. Trifonov and V. Miloslavskaya
Twisted polar codes
Proceedings of International Symposium on Information Theory and Its Applications , page 456-460.
2014
2.
Peter Trifonov and Vera Miloslavskaya
Polar Codes with Dynamic Frozen Symbols and Their Decoding by Directed Search
Proceedings of IEEE Information Theory Workshop , page 1-5.
2013
1.
Peter Trifonov
Efficient Design and Decoding of Polar Codes
IEEE Transactions on Communications, 60(11):3221 - 3227
November 2012
Export as:
BibTeX, XML

Contacts

Polytechnicheskaya str., 21, office 103

194021, Saint-Petersburg, Russia

Phone: +7-812-2970629

Head of the Coding Theory and Telecommunications Group: Associate Professor  Peter V. Trifonov


Upcoming Events

no news in this list.

Recent Events

07.02.2011 Учебный процесс:
29.12.2010 Заседание кафедры:
28.10.2010 Семинар:
Displaying results ###SPAN_BEGIN###%s to %s out of ###SPAN_BEGIN###%s
<< First < Previous 1-5 6-10 11-15 16-20 21-25 26-30 31-35 Next > Last >>

Recent Updates

Aktuell liegen keine neuen Inhalte vor.