The basis of Mathematical Modeling

bachelors

Russian variant (2016-2017)

N.	Study unit	Contact hours				Individua I	Total hours	ECTS
		Lectur e	Seminar	Tutorial and lab	Other	stud. work		
4th Yea	ar – 7th Semester							
1	Modeling and simulation of complex dynamical systems	36		36		36	144	4.0

4th Y	ear - 8th Semester						
5	Modeling and simulation of complex dynamical systems	36	36	36	144	4.0	

Suggested Variant

N.	Study unit	Contact hours				Individua I	Total hours	ECTS
		Lectur e	Seminar	Tutorial and lab	Other	stud. work		
4th Yea	ar – 7th Semester							
1	The basis of Mathematical Modeling	36		36		36	144	4.0

Lectures and Labs 1

Nº	Lectures	Laboratory works			
1	Mathematical modeling Classification of models	Differential and difference equations			
2	Mathematical modeling Computer experiments				
3	Dynamical systems	2. Singular (fixed) points			
4	One-dimensional dynamical systems				

Lectures and Labs 2

Nº	Lectures	Laboratory works		
5	Two-dimensional dynamical systems	3. Linear continuous and discrete dynamical systems		
6	Event-Driven Dynamical systems			
7	UML State Machines			
8	Stability	4. Event-Driven Dynamical systems		
9	Properties of Classical Dynamical systems			
10	Properties of Event-Driven Dynamical systems			

Lectures and Labs 3

Nº	Lectures	Laboratory works		
1000000				
11	Bifurcation	5.Linearization		
12	Theory of oscillations			
13	Markovian processes			
14	Numerical experiments. Visualization of behavior	6. BifurcationOne-and-two dimensional dynamical systems		
15	Software for modeling and simulation dynamical systems _1	dynamical systems		
16	Software for modeling and simulation dynamical systems _1			
17	Test	Credit		
18	Credit			

Textbook Table of Contents

introduction

Chapter 1. Математическое моделирование как инструмент познания и проектирования.

- Mathematical models.
- Models based on ordinary differential and difference equations
- Models based on partial differential equations.
- Computing experiment

Chapter 2. Dynamical systems

- Continuous and discrete dynamical systems
- One dimensional and two dimensional dynamical systems.
- Linear dynamical systems and their classification of singular points

2

Chapter 3. Stability.

- Stability of dynamical systems.
 Lyapunov' theorems about stability .
- Linearization and stability. Lyapunov's Functions and stability
- Chapter 4. Hybrid systems.
- Hybrid time. Hybrid automata. Zenon effect, sliding mode.

3

Chapter 5. Theory of oscillation

- limit cycle. Poincaré cross-section Chapter 6. Bifurcation
- Continuous and discrete systems
- Bifurcation diagrams
- Strange attractors.

Chapter 7. Markov chains

- Continuous and discrete chains
- Kolmogorov equations.

Chapter 8. Computing experiment.